Emotion and Sentiment Recognition in Polish Texts Using Large Language Models

A Winning Approach to PolEval 2024

Krzysztof Wróbel

∕spix.lεs/ a.k.a Spichlerz

Data

- Polish consumer reviews from 4 domains:
 - Hotels
 - Medicine
 - Products
 - School
- Dataset split:
 - Training: 776 reviews (6,393 sentences)
 - Two test sets: 167 reviews each (~1,250 sentences each)

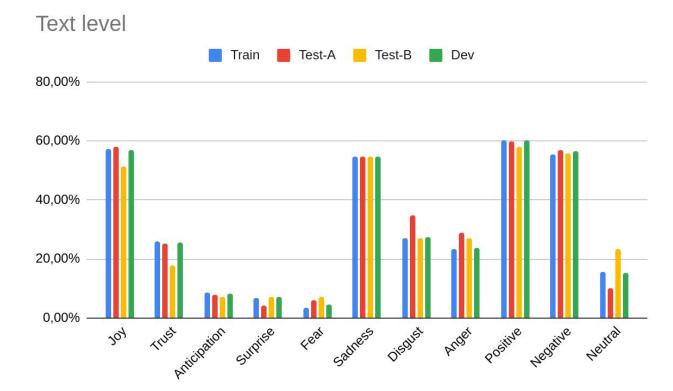
Annotation Schema

- Emotions (Plutchik's wheel):
 - ∘ Joy,
 - Trust,
 - Anticipation,
 - \circ Surprise
 - Fear,
 - o Sadness,
 - Disgust,
 - Anger
- Sentiment polarity:
 - Positive,
 - Negative,
 - Neutral
- Labels applied at both sentence and review (text) levels

Data Distribution Highlights

- Most Common Labels
 - Joy: ~48% (sentences), ~57% (texts)
 - Sadness: ~43% (sentences), ~54% (texts)
 - Positive: ~53% (sentences), ~60% (texts)
- Rare Labels
 - Fear: ~4% (both levels)
 - Surprise: ~6% (both levels)

Random vs Stratified split class distribution



	Test-A	Test-B
Anticipation	13	12
Surprise	7	12
Fear	10	12
Neutral	17	39

Length of examples

Average token length: ~412; max: 6,043

- 85.44% (663) of samples contain fewer than 512 tokens, making them suitable for processing with standard BERT-style models
- 93.69% (727) of samples are under 1,024 tokens
- 97.42% (756) of samples are under 2,048 tokens
- 99.36% (771) of samples are under 4,096 tokens

Evaluation

$Final\,score = \frac{F1_{macro}\,sentences + F1_{macro}\,texts}{2}$

Technical Approach

- Model Selection:
 - Bielik-11B as base model
 - Handles longer sequences effectively
 - Supports Polish language processing
- Training Techniques:
 - Low-Rank Adaptation (LoRA)
 - Supervised Fine-Tuning (SFT)
 - Custom multilabel classification head

Model Architecture

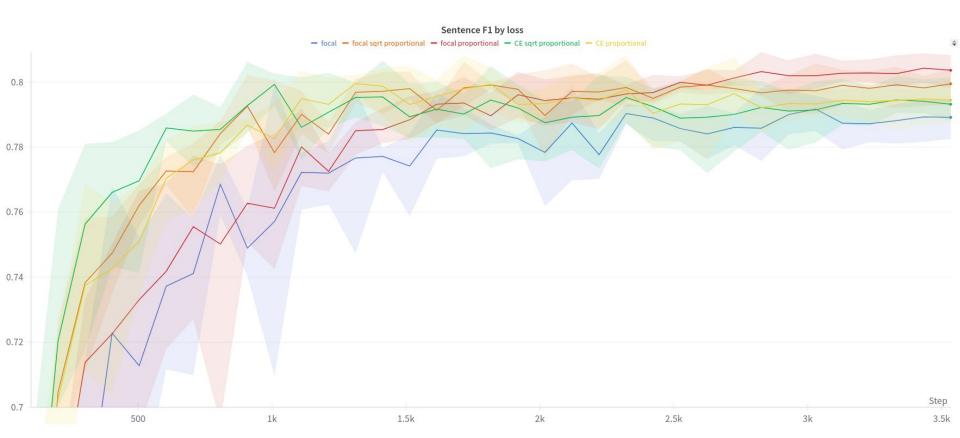
- Custom classification head with 11 binary classifiers
- Processes both sentence and text-level inputs
- Structured prompt format:

Lewy kontekst: {left_context}
Tekst do oceny: {text_to_evaluate}
Prawy kontekst: {right_context}
Oznacz tekst do oceny względem emocji i sentymentu: radość, zaufanie,
oczekiwanie, zaskoczenie, strach, smutek, obrzydzenie, gniew, pozytywny,
negatywny, neutralny.

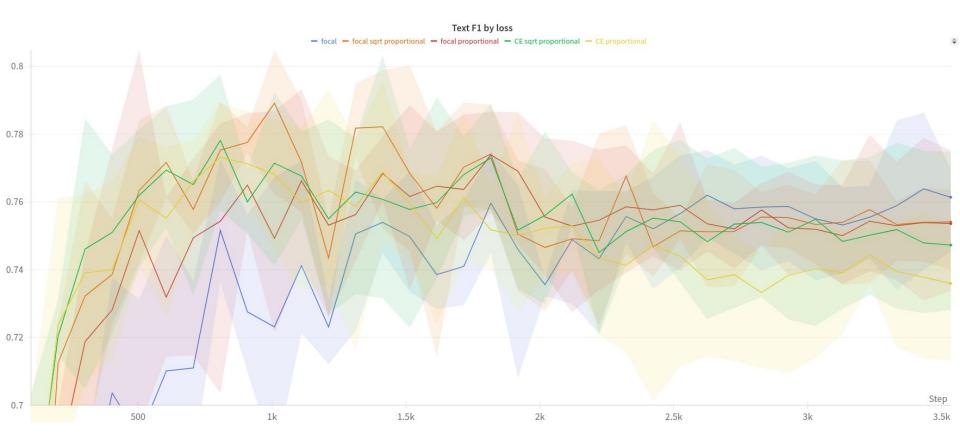
Experimental Setup

- learning rate: 1e-4 to <u>2e-4</u>
- batch size: <u>16</u>, 32
- epochs: 3, 5, 8, <u>10</u>
- LoRA rank: <u>16</u>, 64
- context window: 0, <u>1</u>, 2, <u>3</u> sentences
- loss: binary cross-entropy, <u>focal loss</u>
- class weights: uniform, proportional to inverse of class frequency, proportional to inverse of square root of class frequency
- weight for text loss: 1.0, <u>5.0</u>, <u>10.0</u>
- train on sentence level, train on text level or both
- using additional dataset: XED (Öhman et al. 2020)
- 5 weight initialization seeds
- max sequence length: 1024, 2048, 4096

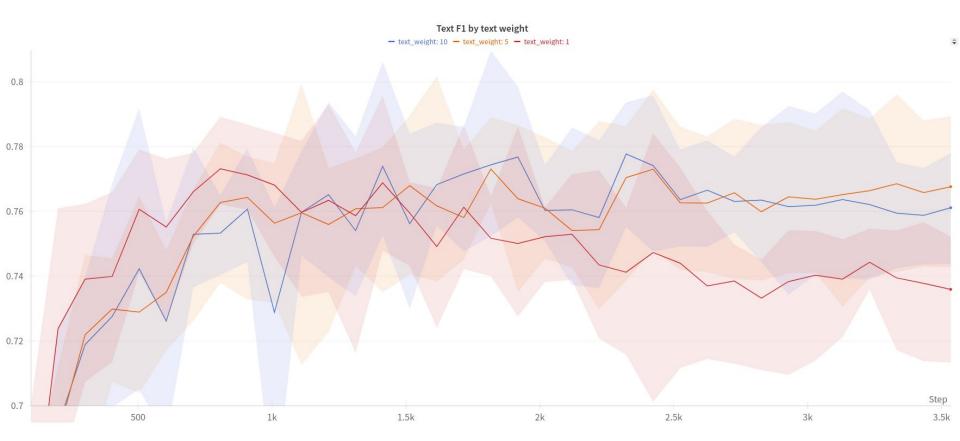
Sentence F1 by loss



Text F1 by loss



Text F1 by text weight



Results

Model		Dev		Test-A			Test-B			
	Sent.	Text	Avg	Sent.	Text	Avg	Sent.	Text	Avg	
1 Single unified	81.19	78.81	80.00	80.78	77.86	79.32	80.72	74.27	77.49	
2 Sentence specialist	82.31	76.78	79.54	80.68	76.81	78.74	81.06	74.40	77.73	
3 Text specialist	79.24	80.17	79.71	78.36	79.40	78.88	77.82	78.48	78.15	
5 Per-label ensemble	83.99	85.67	84.83	80.84	78.19	79.51	80.80	73.92	77.36	
7 Majority voting	82.84	81.06	81.95	81.62	77.77	79.70	81.51	74.95	78.23	
9 Hybrid ensemble	84.21	84.75	84.48	80.71	78.32	79.51	81.72	76.07	78.90	
10 Test-A optimized	82.84	80.17	81.51	81.62	79.40	80.51	81.51	78.48	79.99	
11 Full data retrain	_	_	<u> </u>	80.83	77.82	79.32	81.50	76.12	78.81	

Competition Results

Rank	Submitter	Affiliation	Entries	test-A scores			test-B scores		
				Sent.	Text	Final	Sent.	Text	Final
1	Krzysztof Wróbel	Enelpol, UJ, AGH	10	81.62	79.40	80.51	81.51	78.48	79.99
2	Т		196	78.87	81.54	80.20	79.34	79.28	79.31
3	Cezary Kęsik	UW	25	74.94	76.42	75.68	76.66	79.33	77.99
4	Jakub Pokrywka	-	15	78.65	75.93	77.29	79.43	75.77	77.60
5	Paweł Lewkowicz	-	10	74.29	77.73	76.01	77.27	77.20	77.23
6	ka		32	75.94	77.47	76.70	76.11	77.76	76.94
7	Cezary Kęsik	University of Warsaw	5	73.62	79.12	76.37	75.94	70.43	73.19
8	Jakub Kosterna	-	4	50.47	28.71	39.59	52.19	28.71	40.45
9	Paweł Cyrta	Metamedia Technologies	5	33.04	32.74	32.89	31.86	34.28	33.07

Finetuned Bielik-1.5B-Instruct: Final 75.16%

Key Findings

- Ensemble approaches showed best performance
- Text specialist models excelled at text-level predictions
- Context window size significantly impacts results
- Model initialization seed affects performance stability
- Balanced handling of rare emotions is crucial

Future Directions

- Test smaller model architectures
- Explore 22-output prediction approach
- Improve handling of rare emotion categories
- Develop better validation set creation methods

Thank you

Source code and models are available at:

https://github.com/enelpol/poleval2024-task2

Contact:

contact@enelpol.com

https://www.linkedin.com/in/wrobelkrzysztof/

Supported by PLGrid ACK Cyfronet AGH (Grant PLG/2024/017168)

/spix.lɛs/ a.k.a Spichlerz

BIELIK