## POLEVAL 2024

Task 3: Polish Automatic Speech Recognition Challenge

### Augmenting Polish Automatic Speech Recognition System With Synthetic Data

Łukasz Bondaruk, <u>I.bondaruk@samsung.com</u>
Jakub Kubiak, <u>j.kubiak@samsung.com</u>
Mateusz Czyżnikiewicz, <u>m.czyznikiew@samsung.com</u>

2 December 2024



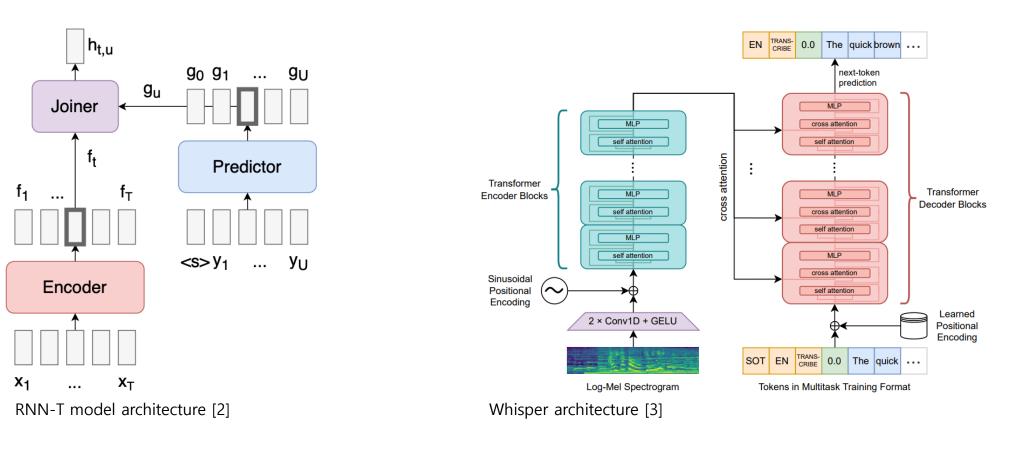


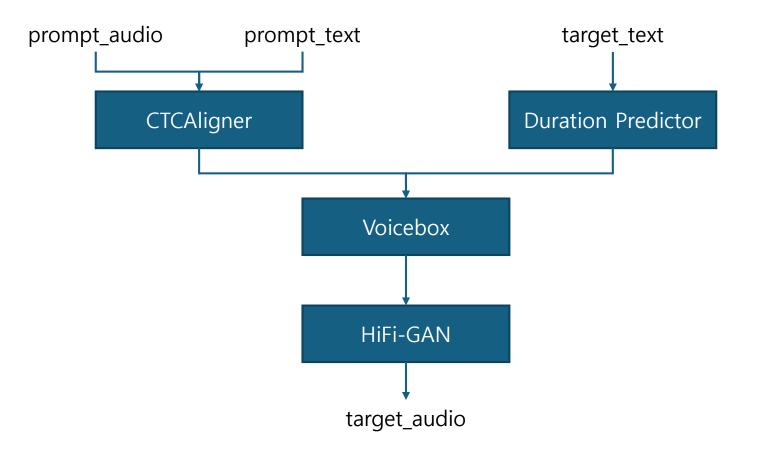
Dataset summary [1]

|        | Number of samples |        |        | <b>Duration</b> [h] |        |        |
|--------|-------------------|--------|--------|---------------------|--------|--------|
| Split  | BIGOS             | PELCRA | Total  | BIGOS               | PELCRA | Total  |
| train  | 82025             | 229150 | 311175 | 236.70              | 432.26 | 668.96 |
| dev-0  | 14254             | 28532  | 42786  | 27.51               | 49.60  | 77.11  |
| test-A | 1002              | 1167   | 2169   | 2.53                | 2.14   | 4.67   |
| test-B | 991               | 1178   | 2169   | 2.48                | 2.15   | 4.63   |

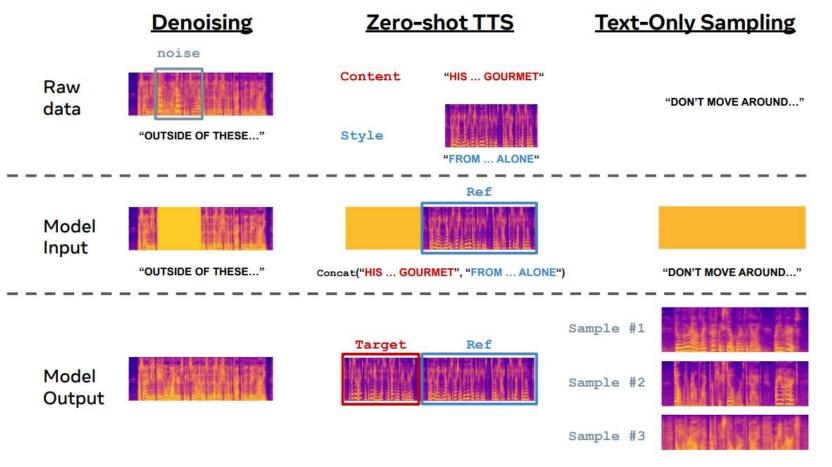
Difficult - many sources:

- PELCRA spontaneous and conversational
- BIGOS audiobooks, read speech, many devices, multiple acoustic conditions


Small - only ~700h

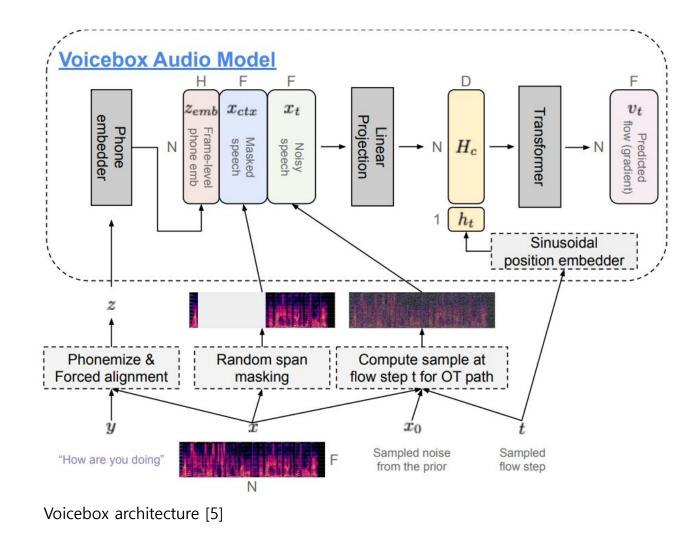

Conformer-based [4] RNN-Transducer:

- lighweight 60M parameters
- trained from scratch


Whisper [3]:

- large 1550M parameters
- pretrained on massive corpus and finetuned






#### **Speech Synthesis - Voicebox**



Voicebox task generalization [5]

#### **Speech Synthesis - Voicebox (Conditional Flow Matching)**



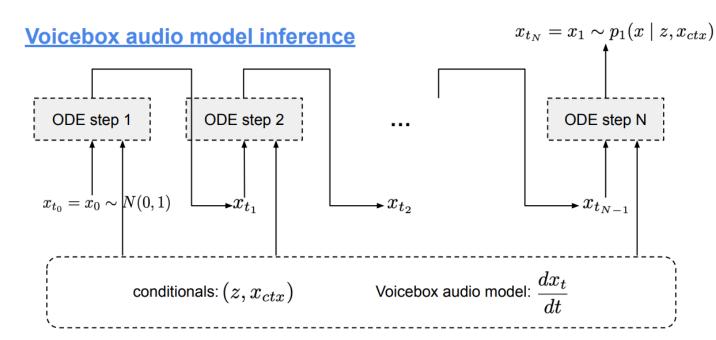
Training procedure for given sample of text and melspec (y, x):

1. Preprocess text

and forced alignment to melspec

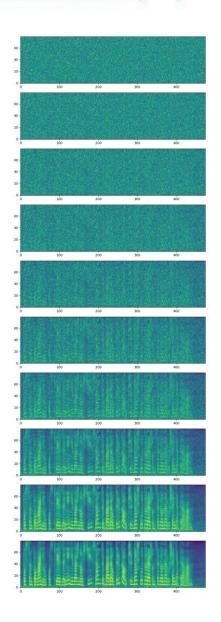
- 2. Mask span of melspec (context modelling)
- 3. Sample at flow step  $t \in [0,1]$ :

 $x_t = (1-t)x_0 + tx_t$ 

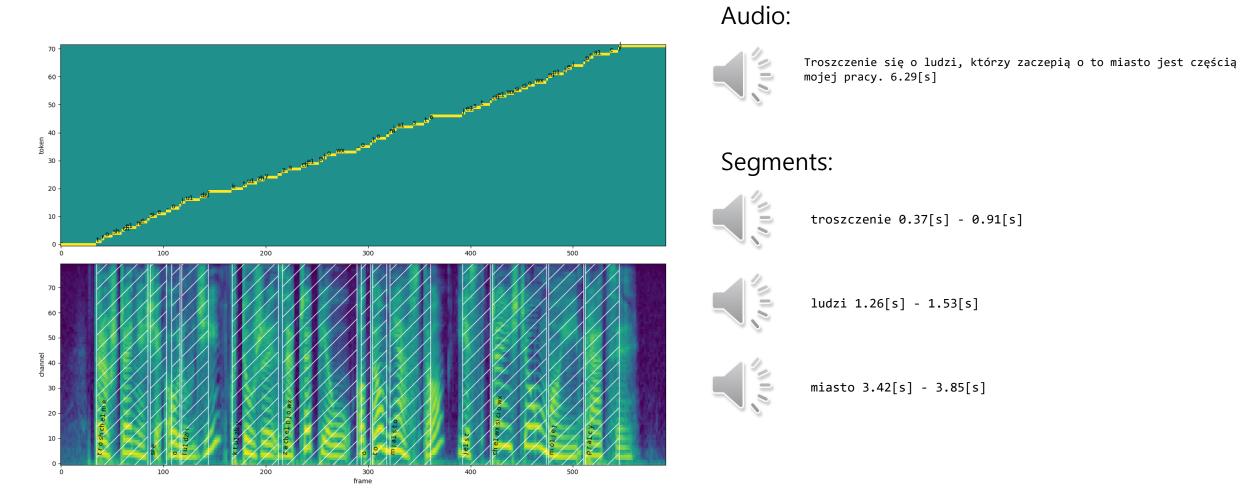

where  $x_0 \sim \mathcal{N}(0,1)$ 

4. Calculate target for the model:

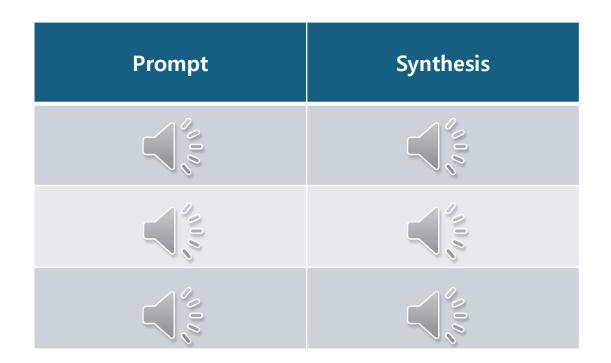
$$v_t = \frac{dx_t}{dt} = -x_0 + x$$


5. Calculate loss only for masked span of *x* 

#### **Speech Synthesis - Voicebox (Inference)**




Voicebox inference as solving an ODE with initial condition  $x_o$  sampled from prior, derivative  $\frac{dx_t}{dt}$  specified by the model, and conditional inputs  $(z, x_{ctx})$ . [4]


Selecting number of steps allows for trade-off between speed and quality. Usually even after 15 steps quality is very good.



#### **Speech Synthesis - Forced Alignment**



#### ©2024 Samsung Research. All rights reserved



Utilized (recorded+synthethic) datasets summary [1]

| Dataset            | Composition                 | Number of samples  | Duration [h]                               |
|--------------------|-----------------------------|--------------------|--------------------------------------------|
| baseline<br>mix-00 | train<br>train + synth-00   | $311175 \\ 604671$ | $\begin{array}{c} 669 \\ 1109 \end{array}$ |
| <i>mix-01</i>      | train + synth-00 + synth-01 | 1191663            | 1999                                       |

Prompts for synthesis were selected randomly from audio files that:

- achieved CER of at most 25%
- had a speech rate variation of up to 2.5 standard deviations from mean

Results on dev split of data [1]

| Model                                                                           | BIGOS                                 | PELCRA                    | Total                     |
|---------------------------------------------------------------------------------|---------------------------------------|---------------------------|---------------------------|
| whisper-large-v3                                                                | 6.08                                  | 29.04                     | 21.39                     |
| whisper-large-v3-baseline<br>whisper-large-v3-mix-00<br>whisper-large-v3-mix-01 | $6.16 \\ 5.04 \\ 3.93$                | $23.35 \\ 22.58 \\ 20.98$ | $17.62 \\ 16.74 \\ 15.30$ |
| conformer-baseline<br>conformer-mix-00<br>conformer-mix-01                      | $     11.22 \\     7.85 \\     7.26 $ | 30.55<br>27.32<br>25.38   | $24.11 \\ 20.84 \\ 19.34$ |

Results on test split of data [1]

|                                                                                 | test-A                 |                           | test-B                 |                           |
|---------------------------------------------------------------------------------|------------------------|---------------------------|------------------------|---------------------------|
| Model                                                                           | CER                    | WER                       | CER                    | WER                       |
| whisper-large-v3-baseline<br>whisper-large-v3-mix-00<br>whisper-large-v3-mix-01 | $7.15 \\ 6.85 \\ 6.90$ | $11.52 \\ 11.07 \\ 11.27$ | $7.10 \\ 6.91 \\ 6.85$ | $11.23 \\ 11.15 \\ 11.07$ |
| conformer-baseline<br>conformer-mix-00<br>conformer-mix-01                      | $8.77 \\ 7.60 \\ 7.08$ | $17.48 \\ 15.25 \\ 13.99$ | $8.37 \\ 7.16 \\ 6.90$ | $16.82 \\ 14.33 \\ 13.40$ |

- Addition of synthetic data improves results for both tested models
- No clear saturation even with tripling the amount of data

- Language model could be used to introduce even more variability in synthetic data
- More careful procedure for choosing audio prompts for synthesis could be beneficial

 Decent voice-cloning speech synthesis system can be trained with as little as 700h of labelled speech data

Samsung Research

# **Thank You!**

#### References

L. Bondaruk, J. Kubiak, and M. Czyżnikiewicz, Augmenting Polish Automatic Speech Recognition System With Synthetic Data. 2024. [Online]. Available: https://arxiv.org/abs/2410.22903
 <u>https://lorenlugosch.github.io/posts/2020/11/transducer/?ref=assemblyai.com</u>
 A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever, Robust Speech Recognition via Large-Scale We ak Supervision. 2022. [Online]. Available: <u>https://arxiv.org/abs/2212.04356</u>
 A. Gulati et al., Conformer: Convolution-augmented Transformer for Speech Recognition. 2020. [Online]. Available: <u>https://arxiv.org/abs/2005.08100</u>
 M. Le et al., Voicebox: Text-Guided Multilingual Universal Speech Generation at Scale. 2023. [Online]. Available: <u>https://arxiv.org/abs/2306.15687</u>