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PolEval 2020: Introduction

Maciej Ogrodniczuk, Łukasz Kobyliński
(Institute of Computer Science, Polish Academy of Sciences)

PolEval is an evaluation campaign focused on Natural Language Processing tasks for Polish,
intended to promote research on language and speech technologies, create objective evaluation
procedures and improve state-of-the-art.

Since the beginnings we are glad to observe a steady growth of interest in our initiative —
thank you! We started in 2017 with only 2 tasks which already attracted 20 submissions. In
2018 we have received 24 systems competing in 3 tasks and in 2019 — 34 systems in 6 tasks.
2020 brought 42 submissions in 4 tasks (see Figure 1).
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Figure 1: Number of PolEval submissions and average submissions per task in 2017–2020
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This volume consists of proceedings of the online workshop session organized during the AI
& NLP Day conference1 on October 26th, 2020, presenting the results of the 2020 edition of
the shared task.2

In 2020 the systems competed in the following tasks:

— Task 1: Post-editing and rescoring of automatic speech recognition results

— Task 2: Morphosyntactic tagging of Middle, New and Modern Polish

— Task 3: Word Sense Disambiguation

— Task 4: Information extraction and entity typing from long documents with complex
layouts

The number of submissions per each task has varied greatly (see Figure 2): this year it was
the post-editing and rescoring of ASR results task which has attracted the most submissions.
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Figure 2: Number of PolEval submissions per task in 2020

We are very sorry that we could not meet in person this time due to the COVID situation but
we hope we will be able to do it next year. Please join us to celebrate the fifth edition of
PolEval in 2021!

At all times, please feel free to share your ideas for improving this competition or willingness
to help in organizing your own NLP tasks.

1https://2020.nlpday.pl
2http://2020.poleval.pl

https://2020.nlpday.pl
http://2020.poleval.pl
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Results of the PolEval 2020 Shared Task 1:
Post-editing and Rescoring of Automatic Speech
Recognition Results

Danijel Koržinek (Polish-Japanese Institute of Information Technology)

Abstract

This paper describes a challenge during the 2020 Poleval competition regarding the topic of
post-editing in the context of automatic speech recognition (ASR). The task was to create a
system which corrects common language mistakes made by an ASR system. The input to the
system could be either a single-best output, an n-best output or a lattice generated by the ASR
system. Most contestants used modern NLP and deep learning approaches. The best system
achieved an improvement of 13% relative WER.

Keywords

automatic speech recognition, natural language processing, post-editing, rescoring

1. Introduction

Automatic speech recognition (ASR) systems are used to convert audio recordings of speech
into text. Just like most machine learning systems, ASR makes mistakes. A common way
of expressing this is through the Word Error Rate (WER), which is equivalent to the ratio
number of words mistakenly substituted, deleted or inserted with regard to the number of
words in the correct transcript of a particular utterance. One of the most often used research
goals is the reduction of this value within specific contexts.

This error can be reduced either by improving the internal mechanisms and models of the
system itself, but a very popular method used in various problems involving a text output is
post-editing (see e.g. Bassil and Alwani 2012, Lee et al. 2019, Lopes et al. 2019, Shterionov
et al. 2019, Vu and Haffari 2018). This means using various external techniques to convert
the raw text output of the system into a more correct version. A few motivating factors for
the post-editing approach are given below.
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A typical ASR system is usually created using a combination of an acoustic and a language
model, where the language model is often based on a basic statistical n-gram approach. Errors
produced by such a system are often trivial and easy to spot. One might argue that using
a better language model could fix this problem, but this is often intractable as the system
is expected to produce a language score of many hundreds of acoustic-level hypotheses at
any given time. Even the more modern end-to-end ASR systems often suffer from this same
issue, as the model size is already extremely large in order to contain both the acoustic and
language parts in the same deep neural network.

Given the lack of constraints of the typical ASR system, a post-editing solution can take any
design approach into account. It can be as simple as using a larger n-gram language model or
as complicated as a combination of several NLP-oriented subsystems targeted at fixing specific
language problems. It would be especially interesting to explore the new recurrent neural
network based language models like BERT or other similar seq2seq approaches.

Finally, it turns out that a form of post-editing is actually a common approach used in many
state-of-the-art results (e.g. Xiong et al. 2018, Xu et al. 2018), as a way of getting around the
limitations of online speech recognition process. This technique is commonly referred to as
re-scoring and it utilized more than just a single best output of the ASR system. It relies either
on the N-best outputs (usually ≈100 per utterance) or a more efficient data structure known
as the lattice. The N-best approach works by simply taking the new model and re-scoring
each hypothesis of the N-best hypotheses, which leads to a new ordering and a new sentence
ending up as the best result.

The lattice approach is a bit more involved. A lattice is a connected graph where each arc
emits a word with a specific weight attached to it. A path starting from a specific state in
the graph and ending up in another specified state has a score calculated as the combination
of the consecutive weights of the arcs used to traverse it. It is equivalent to the sequence
and initial score of the N-best approach discussed above, but much more compact and
efficient. Furthermore, each weight can be decomposed into its acoustic and language model
components, which makes the re-scoring even better, by saving the acoustic model information
in the final score. A lattice oracle is the path within the lattice that is closest to the reference
output. A lattice will not contain every possible word sequence, so the lattice oracle error rate
is usually > 0%.

2. Task definition

The goal of this task was to create a system for converting a sequence of words from a specific
ASR system into another sequence of words that more accurately describes the actual spoken
utterance. The training data consisted of utterance pairs – each pair containing an utterance
generated by the output of the ASR and an utterance containing the correct transcription of
the utterance.

The ASR system used to create the training data was the same one used during the evaluation
procedure. That means that the solution to this task had to be able to correct the errors that
particular one specific system makes. It didn’t need to fix errors in any system that it hasn’t
seen.
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Table 1: Contents of the training data

Data set WER % Lattice oracle WER %

Clarin-PL training set 9.59 3.75
Clarin-PL test set 12.08 4.72
Clarin-PL dev set 12.39 4.93
Polish Parliamentary Corpus 45.57 30.71

For simplicity, the output of both the ASR and the required reference was in normalized
form: no punctuation, no capitalization and no digits, symbols or abbreviations. Just a simple
sequence of words.

3. Data

The ASR system used to generate the transcripts was trained on the Clarin-PL studio corpus
using the tri3b model from the ClarinStudioKaldi setup available online and in (Koržinek et
al. 2017). The same system was applied to a larger Polish Parliamentary Corpus1 from the
last year’s competition described in (Koržinek 2019).

Each provided set contained the following files:

— 1-best output – each utterance containing a single best transcript of the ASR output

— n-best output – each utterance containing up to 100 best alternative hypotheses of the
ASR output

— lattice output – each utterance containing a list of arcs forming a lattice of the ASR
output; each line contains the following fields: start node, end node, words, language
weight, acoustic weight, list of phonetic-level states

— reference – file similar to the 1-best output, but containing the actual reference transcript

The contestants were encouraged to use other resources to train their systems such as the
Polish Sejm Corpus (Ogrodniczuk 2012, 2018) for language modeling. There was also a
similar task completed a year prior by a different research team described by Kubis et al.
(2020).

4. Evaluation

The evaluation was carried out on a newly created dataset of sessions of the European
Parliament in Polish, unavailable to the participants, but soon to be published online and
described by Chmiel et al. (2020). Participants were provided with a file containing a
collection of ASR outputs in the format described in the training section. They had to create a

1http://clip.ipipan.waw.pl/PPC

http://clip.ipipan.waw.pl/PPC
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file containing the final corrected output, one line per utterance in the similar format as the
1-best output. The participants were allowed any number of submissions and the best one
was counted to the final ordering.

The evaluation was carried out using the NIST SCLITE package to determine the Word Error
Rate (WER) of the individual submissions. Word error rate is defined as the number of edit-
distance errors (deletions, substitutions, insertions) divided by the length of the reference:

W ER=
Ndel + Nsub + Nins

Nre f

The task of creating an interesting competition turned out to be more difficult than anticipated.
If the ASR system used was too good, the post-editing problem would be too minor and
unimpressive. A very bad system, on the other hand, would make the language too difficult
to analyze. A compromise was made and the chosen system had a somewhat average word-
error-rate (from the tested systems) amounting to 27.6%. For those that decided to use the
lattice as their input, they could count on the oracle word-error-rate of 17.7%, presenting
a sort of floor for the error rate of the given ASR system. That means that the system likely
made many errors which were unrecoverable from the post-editing perspective, therefore an
improvement of even a few absolute percentage points made a significant difference.

5. Participating systems and results

There were 20 submissions from 8 different teams. The results were very close in a few cases.
To make the assessment a bit more interesting we calculated both the error rate compared
to the reference (which was not known to the submitters), as well as the single best output
(which was known to the submitters). The latter shows the number of changes the submission
made to the original.

The submission titled “MLM+bert_base_polish” only had 171 out of 462 files submitted and
cannot be directly compared with others. The result for only the present files was 26.8%. If
we extract these 171 files from the winning submission, its result would yield 23.4%, so this
submission would have lost in this comparison as well.

The winning submission by the Wrocław University team titled “flair-bigsmall” was submitted
twice (both submissions were identical) and it also lacked the output for 2 files. The result in
the table is calculated assuming these two files were completely incorrect. If we didn’t account
for these files, the result would be 24.0%. It was a close call with between the Wrocław
University and Adam Mickiewicz University teams, but ultimately the former team won

Acknowledgements
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Table 2: Results of the submissions to Task 1

Submitter Submission Affiliation WER % Changes

Krzysztof Wróbel KRS + spaces UJ, AGH 25.9 3.6%
Krzysztof Wróbel KRS UJ, AGH 26.9 1.6%
Dariusz Kłeczek Polbert skok.ai 26.9 2.1%
Tomasz Ziętkiewicz BiLSTM-CRF edit-operations tagger AMU 24.7 6.2%
Kornel Jankowski base-4g-rr Samsung 27.7 2.0%
Adam Kaczmarek t-REx_k10 UWr 24.9 14.2%
Adam Kaczmarek et al. t-REx_k5 UWr 25.0 14.2%
Adam Kaczmarek et al. t-REx_fbs UWr 24.0 17.2%
Krzysztof Wolk PJA_CLARIN_1k PJAIT 33.5 9.1%
Krzysztof Wołk PJA_CLARIN_10k PJAIT 32.0 9.6%
Krzysztof Wołk PJA_CLARIN_20k PJAIT 31.8 9.9%
Krzysztof Wołk PJA_CLARIN_40k PJAIT 31.8 10.3%
Krzysztof Wołk PJA_CLARIN_50k PJAIT 31.8 10.2%
Krzysztof Wołk CLARIN_SEJM_40k PJAIT 33.7 19.1%
Krzysztof Wołk CLARIN_SEJM_50k PJAIT 32.5 17.7%
Jim O’Regan MLM+bert_base_polish n/a 26.8 2.1%
Tomasz Syposz et al. tR-Ex_xk UWr 25.7 18.1%
Tomasz Syposz et al. tR-Ex_fbs UWr 24.0 17.2%
Tomasz Syposz et al. tR-Ex_fx UWr 25.0 23.3%
Tomasz Syposz et al. tR-Ex_kxv2 UWr 25.5 17.1%
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t-REx: The Rescorer-Extender Approach to ASR
Improvement

Adam Kaczmarek (VoiceLab.AI)

Tomasz Syposz, Michał Martusewicz, Jan Chorowski, Paweł
Rychlikowski (Institute of Computer Science, University of Wrocław)

Abstract

This paper presents our contribution1 to PolEval 20202 Task 1: Post-editing and rescoring of
automatic speech recognition results. Our system was scored first and achieved WER 24.3%
(compared to 27.6% for original ASR system).

Keywords

natural language processing, computational linguistics, linguistic engineering, lattice, flair,
word2vec, n-grams

1. Introduction

Automatic Speech Recognition is one of the standard natural language processing tasks for
which the input is a recording and the output is a transcription of that recording. Most often,
first the input waveform is transformed to feature vectors sequence (MFCC, or spectrogram),
and then the ASR system tries to find the most likely sequence of words for these features.
Nevertheless, it is interesting to ask whether, for a specific speech recognition system, looking
only at its results (presented as the most likely sequence of words, a set of top-N sequences,
or a lattice describing many variants of the recognition together with their costs), we will be
able to significantly improve the performance of the original system.

1Code and models are available at: https://github.com/adamjankaczmarek/poleval2020
2http://2020.poleval.pl

https://github.com/adamjankaczmarek/poleval2020
http://2020.poleval.pl
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2. Task description

The goal of PolEval 2020 Task 1. Post-editing and rescoring of automatic speech recognition
results is to create a system for converting a sequence of words from a specific automatic speech
recognition (ASR) system into another sequence of words that more accurately describes
the actual spoken utterance. In the training data for every utterance we have its correct
transcription, as well as the output of an ASR system (top N word sequences, and the full
lattice containing acoustic and language model costs).

3. Our system

We have decided to implement our system based on the following ideas:

1. Use several Language Models trained on various text corpora including large parts of the
Polish Parliamentary Corpus (Ogrodniczuk 2012, 2018) and the reference transcriptions
given as training data.

2. Experiment both with standard n-gram models, and with modern deep neural networks
architectures (including recurrent models defined in Flair library, and BERT transformer
model).

3. Implement our own beam search on lattices which can handle the above mentioned
language models.

4. Extend the original lattice with extra words, by adding new nodes and edges.

3.1. Lattice extending

The idea behind lattice extensions is fairly simple: when an ASR creates a lattice it may miss
some words from the real sentence. These words cannot be recovered with regular lattice
rescoring. We can counteract it by adding new edges to the lattice. The first step was to find
for each word in the lattice a set of possible extensions which are words within a small edit
(Levenshtein) distance. For this we used a structure called “BK-tree” filled with unigrams3

from the NKJP corpus (Przepiórkowski et al. 2012). The search range was dependent on the
chosen word’s length. There were a few assumptions and restrictions. We did not want to
extend short words, because almost all of them are in the shortest range. We also knew the
longer the word, the smaller the set of words in a given edit distance. For computational
reasons, the set of possible extending words and the search radius had to be rather small. We
experimentally established that it’s better to use the distance between words converted to
phonemes.

3http://zil.ipipan.waw.pl/NKJPNGrams

http://zil.ipipan.waw.pl/NKJPNGrams
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The final search radius was given by the formula:

x = length of phonemes form of a word

search radius (x) =











0, if x < 4

1, if 4≤ x < 8

2, if x ≥ 8

After this we need to cut down the lattice because it is much too big — 30 times bigger than
the original one. Our idea is loosely inspired by graph-based text summarization (Mihalcea
and Tarau 2004). We create a directed graph describing the relationship between words in
the lattice. The intuition is as follows: nodes are connected by an edge if it is natural that
they can appear in the same utterance.

We create edges between two nodes if the following score is bigger than 1:

�

v ∗ cosine_distance(parent, child) + b ∗ log10
bi-gram[parent, child]

uni-gram[parent]

�−1

where cosine_distance is equal to one minus cosine similarity between word2vec vectors for
given words, uni-gram[w] is the unigram count for word w, bi-gram[w1, w2] is the 2-gram
count for w1 and w2, and b and v are constants. We, again, used n-grams with their respective
counts collected on NKJP. During experiments, we set b to −40 and v to 333. These constant
have been chosen such that only about 30% of edges have a score above 1, which results
in a sparse graph. The next step is to perform a PageRank algorithm (Brin and Page 1998)
on the resulting graph. When the Page Rank iterations are done, we keep up to 15 possible
extensions of each word by selecting the candidates with the biggest page rank value.

Lattice extending results

The average oracle WER on extended lattices from our train set was 9.8%. After reducing it
with PageRank algorithm by more than 3 times we achieved 11.3% (while oracle WER on
original lattice set is equal to 15.4%). Of course bigger lattices (with smaller Oracle-WER)
give a bigger chance of substantial WER decrease, however, they also make finding the correct
path much more difficult. We believe that the PageRank reduced version of the lattice is a
good trade-off.

3.2. Lattice rescoring

Our system performs two lattice rescoring runs. First, we find a set of paths using a n-gram
language model. We then rescore the top paths from the second stage using neural language
models.



18 Adam Kaczmarek, Tomasz Syposz, Michał Martusewicz, Jan Chorowski, Paweł Rychlikowski

Beam search

The first lattice rescoring run is a beam search-based rescorer. We investigate two variants of
language models to calculate the total rescored cost according to the equation:

cost= costlanguage + 0.02× costacoustic

The first variant uses beams of size 5 000 and 10 000 with KenLM (Heafield 2011) language
model trained on a large part of the Polish Parliamentary Corpus. The second beam search
variant uses a beam of size 1 000 with Flair (Akbik et al. 2018) language model. We used a
pre-trained model pl-opus primarily based on the Wikipedia and OPUS corpus (Tiedemann
2012). The model was then fine-tuned on the Polish Parliamentary Corpus and its subcorpus
of transcriptions provided in training data.

Beam rescoring

Second lattice rescoring run is a pure language model based rescoring using PolBert4 model.
Language model score is computed as the sum of per-token scores of BERT model. Total score
of an utterance is calculated according to the equation above.

3.3. Results

We present results of our system, along with other submissions to the PolEval 2020 Task 1 in
Table 4. Systems named as t-REx_k5 and t-REx_k10 show results from beam search decoder
with KenLM language model and beams of respective size 5 000 and 10 000. System t-REx_fbs
denotes the winning solution with beam search decoder with beam size 1 000 and the fine-
tuned Flair language model. Additionally, we provide scores for systems evaluated out of
the competition. Due to a technical issue, the winning solution did not contain results for
all utterances. We have corrected it, and here we provide the score for the winning system
with missing transcripts taken from original 1best file from the test dataset. Next systems
are: t-REx_bert — results from t-REx_fbs additionally rescored with PolBert model and two
variants of the system with lattice extending — t-REx_fbsx.

3.4. Future works

There are many possible future directions to extend our work. We enumerate a few of them.

Text corpora

To train a language model we have used two corpora: a large part of Polish Parliamentary
Corpus and a reference transcription from PolEval training data. These two corpora have
several drawbacks when treated as a base for training language models: the small one is

4https://github.com/kldarek/polbert

https://github.com/kldarek/polbert
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Table 1: Results of PolEval 2020 Task 1

System name Affiliation WER % Changes %

KRS + spaces UJ. AGH 25.9 3.6
KRS UJ. AGH 26.9 1.6
Polbert https://skok.ai/ 26.9 2.1
BiLSTM-CRF edit-operations tagger Adam Mickiewicz University 24.7 6.2
base-4g-rr Samsung R&D Institute Poland 27.7 2.0
t-REx_k10 University of Wrocław 24.9 14.2
t-REx_k5 University of Wrocław 25.0 14.2
t-REx_fbs University of Wrocław 24.31 17.2
PJA_CLARIN_1k Polish-Japanese Academy of IT 33.5 9.1
PJA_CLARIN_10k Polish-Japanese Academy of IT 32.0 9.6
PJA_CLARIN_20k Polish-Japanese Academy of IT 31.8 9.9
PJA_CLARIN_40k Polish-Japanese Academy of IT 31.8 10.3
PJA_CLARIN_50k Polish-Japanese Academy of IT 31.8 10.2
CLARIN_SEJM_40k Polish-Japanese Academy of IT 33.7 19.1
CLARIN_SEJM_50k Polish-Japanese Academy of IT 32.5 17.7
MLM+bert_base_polish — 73.9 2.1

Non-competitive results

t-REx_fbs (with 2 from 1best) University of Wrocław 23.93 16.6
t-REx_bert (with 8 from 1best) University of Wrocław 23.4 17.0
t-REx_fbsx_50 University of Wrocław 25.09 23.3
t-REx_fbsx_150 University of Wrocław 23.67 19.1

simply too small (it has only 5 MB of text), while the large one is not a real transcription:
text contains some abbreviations, numbers are written with digits not words (so we lose the
actual form of them), maybe some times text is corrected. It is possible to create a version of
these corpora which is more suitable for speech recognition. It can be done by applying the
text normalization procedures similar to the first pass of a TTS system. Of course it is quite
easy to train a neural network solving this task, and one can produce the training data from
unannotated corpora.

Acoustic information

In this task we had access only to the limited acoustic information: in lattices for every
edge we had an LM cost and acoustic cost (which was a mixture of HMM cost and emission
cost). Moreover, this information was restricted to phonemes occurring in words present in a
lattice. It makes it difficult to expand a lattice (because for many phonemes we don’t have
any information about their acoustic costs). Our assumption, that the cost of new edges is
a sum of an acoustic cost from the closest path in the lattice, and the cost connected with
phonemes insertions, deletions and replacement is in general false: the new version in fact
can have smaller acoustic costs. One can overcome these problems by slight modification of
the task. There are two possibilities for doing this. First one is to record raw acoustic costs,
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ie. probabilities of every phoneme in every 10 ms of speech signal. The second option is to
add to the input data the lattices containing phonemes (the result of the recognition with a
vocabulary containting only phonemes, with a very simple phoneme bigram language model).

More careful lattice extensions

When expanding the lattice we can see the trade-off between bigger lattices which can
substantially reduce the Oracle WER and the ease of beam search: with larger lattices there
are more options to consider. Maybe it is worth concentrating only on very typical errors (as
changing the word into the other word with the same lemma, joining some very short words
with their neighbours, and so on).

Language models with holes

Standard language models give a probability distribution over the word wT given its pre-
decessors w1 . . . wT−1, and they are trained only with the correct prefixes. When the ASR
system results are of a low quality, then, even in wide lattices, there are no perfect paths.
Nevertheless, we use the pretrained LM for the data which is substantially different from the
data used during training. We believe that careful consideration of this issue can yield further
WER reduction.
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Post-editing and Rescoring of ASR Results
with Edit Operations Tagging
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Abstract

This paper presents a system developed at Adam Mickiewicz University and Samsung Research
Poland for submission to PolEval 2020 Task 1: Post-editing and rescoring of ASR results.1

The goal of the task was to “create a system for converting a sequence of words from a
specific automatic speech recognition (ASR) system into another sequence of words that more
accurately describes the actual spoken utterance.” The paper describes a novel approach to
the problem of correcting speech recognition errors, by tagging with edit operations tags.
We show that the proposed system can achieve results comparative with other approaches
while providing a high level of control over how the system works, which make it suitable for
production settings. Beside the detailed description of the method, the paper presents related
works, task and data description, data augmentation techniques and results analysis.

Keywords

natural language processing, speech processing, ASR, speech recognition, error correction,
rescoring, error correction

1. Introduction

Automatic speech recognition is a computer science problem which both academia and industry
have been working on for more than six decades now. Thanks to constant progress in the
field, automatic speech recognition performance in some use cases approaches human level
(Spille et al. 2018).

Still, even state-of-the-art speech recognition systems make mistakes, especially in difficult
conditions or in unknown domains. These mistakes can be addressed in the ASR system
itself, by training or adapting the ASR model with additional data or modifying its parameters.

1http://2020.poleval.pl/tasks/task1/

http://2020.poleval.pl/tasks/task1/


24 Tomasz Ziętkiewicz

This approach, however, is not always possible – it requires large amounts of training data
and computing power. In the case of cloud-based speech recognition services, it can be just
impossible to modify the model used by the ASR at all. Even if one can modify the ASR model
itself and have sufficient resources to do so, the learning capacity of the chosen ASR system
architecture can limit performance achieved by the system in some specific cases (Guo et al.
2019).

To further improve speech recognition results in the above scenarios we can try to fix mistakes
made by an ASR system on its output, in a post-processing step. In this approach hypothesis
returned by the speech recognition system is processed by an error correction model. The
model is trained on previous mistakes of the ASR system and tries to detect and correct
mistakes present in ASR hypotheses.

2. Related work

Errattahi et al. (2018) present a comprehensive overview of speech recognition errors correc-
tion methods. In a more recent paper Guo et al. (2019) propose machine translation-inspired
sequence-to-sequence approach which learns to “translate” hypotheses to reference transcripts.
To augment training data authors use all N-best hypotheses to form pairs with reference sen-
tences, generate audio data using speech synthesis and add noise to the source recordings.
The resulting training set consist of 640M reference-hypothesis pairs. The proposed system
achieves 18.6% relative WER (Word Error Rate) reduction. Zhang et al. (2019) use a similar
approach for Mandarin speech recognition, but propose Transformer model for spelling cor-
rection. Authors report the result of 22.9% relative CER (Character Error Rate) improvement.
Hrinchuk et al. (2019) developed a transformer-based sequence to sequence model, trained on
a training set consisting of 2.5M examples which achieved relative WER reduction of around
12% on English datasets. More recently, Mani et al. (2020) applied machine translation
techniques for the same problem but for a specific domain of medical reports. Depending on
the ASR system used they achieved relative WER reduction of around 16% (41 to 34) and 3%
(35,8 to 34,5).

To our best knowledge, there was only one shared task on ASR error correction before PolEval
2020: “Open Challenge for Correcting Errors of Speech Recognition Systems” (Kubis et al.
2020). This challenge also focused on ASR error correction for Polish speech recognition
but in a slightly different setting. Dataset consisted of just 1-best hypotheses and reference
sentences and the ASR system being used was not open-sourced.

Malmi et al. (2019) use edit operation tagging for sentence fusion, sentence splitting, ab-
stractive summarization, and grammar correction tasks. Transformer architecture is used for
the tagger. For the grammatical error correction task which is most similar to the problem
discussed in this paper, authors report competitive results for small training datasets and very
short inference times compared with sequence to sequence approach.

One can also find research on a closely related topic of grammatical error correction:
see e.g. (Grundkiewicz and Junczys-Dowmunt 2018) for sequence-to-sequence approach
or (Omelianchuk et al. 2020) for tagging approach. There are also shared tasks for grammatical
correction, like (Bryant et al. 2019) or (Ng et al. 2014).
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3. Data

Data provided by organizers consisted of:

— reference transcriptions of utterances (except for evaluation dataset)

— hypotheses returned by speech recognition system in 3 different forms:

— 1-best output – each utterance containing a single best transcript of the ASR output

— n-best output – each utterance containing up to 100 best alternative hypotheses of
the ASR output

— lattice output – each utterance containing a list of arcs forming a lattice of the ASR
output

The speech recognition system used to produce the hypotheses was trained using Kaldi (Povey
et al. 2011) ASR toolkit on CLARIN-PL studio corpus2 (Marasek et al. 2015). Recordings and
references used to create data came from 3 different corpora:

— CLARIN-PL studio corpus (Marasek et al. 2015) (the same used to train the ASR model)

— Polish Parliamentary Corpus (PPC)3

— subset of Polish interpreting corpus (PINC)4

Sizes of the resulting datasets are shown in Table 1.

Table 1: Statistics of datasets provided by organizers

CLARIN-PL studio PPC PELCRA-PARL PINC
Train Test Dev Train Train Eval

Sentences 11 222 1362 1229 6752 8066 462
WER 9.59 12.08 12.39 45.57 59.95 27.6
Oracle WER 3.75 4.72 4.93 30.71 – 17.7
Avg. length 22 21 21 104 12 169
Min. length 3 6 7 1 2 70
Max. length 55 53 49 341 47 435

3.1. Data augmentation

Because task description allowed using external data, we decided to prepare an additional
corpus of ASR hypotheses to augment the training set. Aim of the task was to create ASR error
correction model tailored for specific ASR system. What follows – train, test and development
datasets provided by organizers were produced by the same ASR system as the evaluation
data used for the final assessment of submissions. Therefore, to obtain optimal results, the

2https://clarin-pl.eu/dspace/handle/11321/236
3http://mowa.clarin-pl.eu/korpusy/parlament/parlament.tar.gz (Ogrodniczuk 2018)
4https://pincproject2020.wordpress.com/

https://clarin-pl.eu/dspace/handle/11321/236
http://mowa.clarin-pl.eu/korpusy/parlament/parlament.tar.gz
https://pincproject2020.wordpress.com/
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additional training data should also be prepared using the same speech recognition model. To
achieve it, we trained the model using Kaldi recipe mentioned in task description5 (Koržinek
et al. 2017) and the same training data as used by organizers (CLARIN-PL studio corpus). We
used the ASR to decode PELCRA-PARL corpus (Pęzik 2018), which similarly to CLARIN-PL
studio corpus, contains recordings of Polish Parliament speeches. We chose this corpus because
of a similar domain to the one used in the training and evaluation datasets. By adding the
corpus, which consisted of 8066 sentences, we extended the number of training examples from
11 222 to 19 288. For statistics of the corpus see Table 1. To achieve a larger data set covering
wider variety of errors generated by the ASR system, we used up to 10-best hypotheses to
generate more reference-hypothesis pairs. As a result, the training set finally consisted of
110 059 hypothesis-reference pairs. This is still quite a small dataset in comparison with
training sets used by Guo et al. (2019) (640M) or Hrinchuk et al. (2019) (2.4M), but as shown
by Malmi et al. (2019), tag-apply models (see Section 2) requires much smaller datasets then
sequence-to-sequence models used for the same tasks.

4. Method

Contrary to the sequence-to-sequence approach which learns the hypothesis-reference mapping
directly, we propose a tag-apply approach. Training of a model in this approach consists of the
following steps: input and expected output sequences are compared. Based on differences
found, edit operation tags are added to the input, describing how to transform it into expected
output. This way a corpus of input sequences tagged with operation tags is created. The
corpus is then used to train a tagging model. On inference time, the input sequences are
tagged with edit operations by the model. The edit operations are then applied to the input
sentence.

Below, we describe in detail how training of the model and correction of errors are performed.
Given a corpus of pairs of (potentially incorrect) ASR hypotheses and corresponding reference
transcriptions, a corpus of ASR hypotheses tagged with edit operation tags is prepared (see
Labeler block in Figure 2) Every pair of hypothesis and reference sentences is compared
using Ratcliff-Obershelp algorithm (Ratcliff and Metzener 1988)6 for approximate string
matching. As a result, for every such pair a list of operation codes ("insert", "delete", "replace"
or "equal") is obtained, describing how to transform sequences of tokens from the hypothesis
into corresponding sequences of reference tokens.

Edit operations codes "replace" and "insert" returned by string matching algorithm need
to be combined with tokens from the reference sentence to contain enough information
for transforming hypothesis into a corresponding reference sentence. For example, given
reference sentence: cats are cute and hypothesis: cat are cute the returned opcodes would
be replace equal equal. To make edit operation tag from the operation code "replace" and
reference token cats we concatenate them with _ separator to get replace_cats. Resulting
operation tags for the given example would be: replace_cats equal equal.

5https://github.com/danijel3/ClarinStudioKaldi
6https://docs.python.org/3/library/difflib.html

https://github.com/danijel3/ClarinStudioKaldi
https://docs.python.org/3/library/difflib.html
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Because we want the trained tagging model to be able to generalize into unseen words, we
decided to extend the set of available edit operations to include more fine-grained operations.
To do so, we analyze differences within the mismatched tokens and whenever possible we try
to use more fine-grained operations. In the above example, replace_cats would be changed
into append_s – an edit operation that appends letter s to the word being tagged. For complete
example of processing hypothesis-reference pair, see Figure 1.

cats

are

cutecute

are

cat

ASR

Hypothesis

ReferenceRecording

replace

equal

equal

Speech corpus

cute

are

cat append_s

equal

equal

Tagged Hypothesis

Figure 1: Example of creating a tagged hypothesis sentence from hypothesis-reference pair

Edit operations are chosen in a deterministic manner from a predefined set of edit operation
classes. Examples of edit operations classes can be found in Table 2.

Having prepared a corpus of hypothesis sentences labeled with edit operations, a tagger
model can be learned (see. Tagger trainer block in Figure 2). We train the tagger using Flair7

Sequence Tagger (Akbik et al. 2019) with Polish Flair word embeddings (Borchmann et al.
2018).

During the inference stage, When the system is used to correct ASR output, without knowing
the corresponding reference sentence, the tagging model is used to insert edit operation tags
(see. Tagger block in Figure 2). Edit operations are then applied to words in hypothesis (see
Editor block in Figure 2) to correct potential errors. Using taggers score values returned

7https://github.com/flairNLP/flair

https://github.com/flairNLP/flair
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Table 2: Examples of edit operations

Name Description Example

del deletes a token "a"→ ""

append_s appends given suffix to the token "cat"→ "cats"

add_prefix_ prepends given prefix to the token "owl"→ "howl"

remove_suffix_1 removes 1 character from the end of the token "cats"→ "cat"

remove_prefix_1 removes 1 character from the beginning "howl"→ "owl"
of the token

join joins token with previous one "book store"→ "bookstore"

join_- joins token with previous one using given "long term"→ "long-term"
separator

replace_ replaces token with given string "cat"→ "hat"

together with tag labels, one can also control precision of the system by performing only these
edit operations which were returned with score value above some threshold.

5. Evaluation

The only metric used to officially compare submissions to the task was average Word Error
Rate (WER) of hypotheses corrected by the proposed system. WER is given by following
formula:

W ER=
Ndel + Nsub + Nins

Nre f

where Nsub – number of substitutions, Ndel – number of deletions, Nins – number of insertions,
Nre f – length of reference sentence.

Results achieved by the proposed system are shown in Table 4.

Table 3: Word Error Rates for input data and the proposed system

CLARIN PPC PINC
Train Test Dev – Eval

Raw ASR 1best 9.59 12.08 12.39 45.64 27.6
Lattice oracle WER 3.75 4.72 4.93 30.71 17.7
Edit operation tagger (from 1best) – 10.7 – – 24.7
Absolute WER Reduction – 11.42% – – 10.50%
Relative WER Reduction – 11.42% – – 10.50%
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Speech recording

Hypothesis-reference

Preprocessor
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Tagger trainer

Hypothesis labeled with edit operations

Corrected hypothesis

Hypothesis labeled with edit operations

Tagger
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ASR hypothesis

Editor

Hypothesis

ASR

Tagger model

Reference

Speech corpus

Evaluation DB

Hypothesis - reference

Figure 2: Dataflow in the system

According to official Poleval 2020 results, our submission to the shared task scored second best
result in terms of WER level.8 We believe that by further increasing the training dataset and
experimenting with tagger architecture the result could be even further improved. Organizers
also report percentages of changes introduced by proposed systems into input sentences. In
this respect, our submission (6.2%) is fairly more “conservative” then the winning one (17.2%)
while achieving only slightly higher WER (24.70 vs 24.31) This is especially important in
a commercial setting where error correction systems are expected to prefer precision over
recall.

6. Conclusion

We presented a novel approach to correcting speech recognition errors in a post-processing
step. Instead of learning transformation from hypothesis to reference directly, we propose to

8http://poleval.pl/results/

http://poleval.pl/results/
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learn tags that describe how to turn the hypothesis into reference. A similar approach has been
proved to be valuable in other, yet similar tasks. Achieved results suggest its applicability to
the ASR error correction problem. We showed that the proposed solution has advantages over
sequence-to-sequence systems inspired by machine translation. It offers precise control over
how the error correction model works and it requires smaller training sets. When compared
with competitive PolEval submissions our approach shows a low percentage of introduced
changes. These features suggest applicability of the solution in a production setting.
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Abstract

This paper presents our submission to Task 1 of PolEval 2020 contest. OpenNMT-APE system
was applied in post-editing and rescoring of ASR output for Polish language. The system
trained on Clarin-PL and Polish Parliament corpora was then evaluated with Word Error Rate
metric. The experiments performed differed in dataset size and training steps, and even
though the results fell behind the average WER, the proposed system is novel and worth
further experimenting.

Keywords

Polish, natural language processing, automatic post-editing, APE, Word Error Rate, WER,
speech recognition

1. Introduction

Automatic post-editing (APE) is a supervised learning method of automatically correcting
errors in the output of a machine translation (MT) algorithm (Negri et al. 2018). Post-editing
was traditionally performed by a human editor correcting mistakes in machine translation
(Correia and Martins 2019). The present paper describes the solution proposed to Task 1
of PolEval 2020, an annual contest regarding natural language processing of Polish. In
the submitted solution, the automatic post-editing method was applied to the results of an
automatic speech recognition system. Hence, both the source and the target data being the
same language, and not a language pair.
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2. Task description and data

Task 1 was meant to refine the results of automatic speech recognition (ASR; Levis and Suvorov
2012) through post-editing and rescoring. The created system was supposed to convert
utterances generated by an ASR (transcriptions of oral utterances) into the new ones which
would better reflect the actually spoken phrases. As the ASR used to generate the training
data was also used in the evaluation stage, the created system had to be tailored to the meet
the specifics of this particular ASR only, and not create a global solution. In order to simplify
the task, all reference and output files were simple sequences of words, without capitalization,
digits, punctuation, symbols nor abbreviations.

There were four data sets provided, each consisting of four files: the actual record transcript
for reference, 1-best output with a sole best transcript of the ASR system, n-best output with
up to 100 optimal transcripts, and lattice output in form of a graph representing different
hypotheses for the utterance. Three data sets: training, test and development came from on
from the Clarin-PL studio corpus (Marasek et al. 2015), and the fourth – the Polish parliament
corpus (Ogrodniczuk 2012, 2018).

For the purpose of training, two data sets were prepared: one consisting only of Clarin-PL
sets, and the second combining the Clarin-PL and the Polish parliament corpora.

3. Post-editing system

For the training OpenNMT-APE, part of the open source toolkit for neural machine translation
system (Klein et al. 2017) was selected. Full code is available on Github.1 OpenNMT-APE
applies transfer learning by implementing the pretrained BERT model (Devlin et al. 2019).
The novelty of this approach is the use of BERT both as encoder and decoder in a seq2seq
(sequence to sequence) model (Correia and Martins 2019, Lopes et al. 2019).

As per OpenNMT-APE documentation (available on Github), the following parameters had
their optimal values set:

— Validation steps: 1000

— Checkpoint: 30

— Warmup steps: 5000

— Learning rate: 0.00005

— Average decay: 0.0001

Source and target sequence length was defined as 200, while train steps and start decay steps
were adjusted per each experiment (as shown in Table 1).

Additionally, as advised by Correia and Martins (2019), the self-attention was shared between
encoder and decoder, and the context attention had the same weights as the self-attention.
The dropout rate and the label soothing were both set as 0.1.

1https://github.com/deep-spin/OpenNMT-APE

https://github.com/deep-spin/OpenNMT-APE
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Table 1: Task 1 corpora and training iterations

Submission Corpora Iterations

PJA_CLARIN_1k Clarin-PL 1 thousand
PJA_CLARIN_10k Clarin-PL 10 thousand
PJA_CLARIN_20k Clarin-PL 20 thousand
PJA_CLARIN_40k Clarin-PL 40 thousand
PJA_CLARIN_50k Clarin-PL 50 thousand
CLARIN_SEJM_40k Clarin-PL and Polish parliament 40 thousand
CLARIN_SEJM_50k Clarin-PL and Polish parliament 50 thousand

The whole process had three principal steps: pre-processing, training and translation, and two
additional steps including the clean-up of missing lines and reprocessing of missed lines. In
the pre-processing step model dimensionality was configured with 12 self-attention layers, 12
attention head, the RNN and word vector size of 768, and feed-forward inner layer of 3072.

Correia and Martins (2019) also suggest the use of Moses tokenizer in the pre-processing
stage; however, this method was not used.

Interestingly, unlike in the previous approaches APE was not used for machine translation
post-editing, but it was applied to refine the transcriptions of Polish language, hence improving
the quality of ASR dedicated for Polish language (Ziółko et al. 2011).

4. Evaluation

The evaluation process has been performed with the use of Word Error Rate (WER), which
measures the number of substitutions, deletions and insertions in the hypothesis utterance,
divided by the length of the reference utterance (Popović and Ney 2007).

W ER=
Ndel + Nsub + Nins

Nre f

Ndel refers to the number of deletions, Nsub refers to the number of substitutions, Nins refers
to the number of insertions, and Nre f refers to the reference length.

WER was calculated using NIST SCLITE (Score lite) package which is part of the Scoring
Toolkit developed by the National Institute of Standards and Technology (NIST).2 Reference
data was generated by the same ASR system as the training data.

5. Results

Table 2 below presents the results obtained by each of the submissions made. Word Error Rate
score of the ASR system used was 27.6%, hence any result below this score would indicate

2https://www.nist.gov/about-nist

https://www.nist.gov/about-nist
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a successful solution to the question of refining ASR output. Additionally, Changes column
shows the percentage of changes made by the submission to the original transcription.

Table 2: Submission results

Submission WER % Changes %

PJA_CLARIN_1k 33.5 9.1
PJA_CLARIN_10k 32.0 9.6
PJA_CLARIN_20k 31.8 9.9
PJA_CLARIN_40k 31.8 10.3
PJA_CLARIN_50k 31.8 10.2
CLARIN_SEJM_40k 33.7 19.1
CLARIN_SEJM_50k 32.5 17.7

As can be observed in Table 2, the best score was achieved with the use of Clarin-PL dataset
and 20 thousand iterations – 31.8 WER. The use of additional iterations (respectively 40 and
50 thousand) did change the original output yet did not improve the WER score. The use of
combined dataset (Clarin-PL and Polish Parliament corpora) had an even higher percentage
of change made to the original, yet again the WER score was not satisfactory. Although, it
is worth noting that 50 thousand iterations improved the result, compared to 40 thousand
iterations.

6. Conclusions

We have presented our submission to the PolEval 2020 contest for Task 1. With the use of open
source APE system, the optimal score of 31.8% WER was achieved. It falls behind the average
word error rate; nevertheless, the system applied has great potential thanks to the novelty
application of encoder-decoder architecture with BERT language model (Lopes et al. 2019),
and it would be worth experimenting further to optimize the parameters, in order to refine
the results. Nonetheless, it adds a new perspective to the question of automatic post-editing
models applied to the natural language understanding systems and sets an interesting path
for further research.
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Abstract

In the paper we present the objectives, dataset, evaluation and results of the PolEval 2020
Shared Task 2 devoted to the morphosyntactic tagging of historical texts representing three
periods of the development of Polish: Middle, New and Modern. Our dataset is spanned
between early 17th and early 21st c., covering grammatical and lexical changes of the last
four centuries of the history of Polish. Thus the data are much more diverse and allow for
testing morphosyntactic taggers in a slightly new environment.
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1. Introduction

Morphosyntactic disambiguation is one of the most classic NLP problems. For nearly ten years
the development and evaluation of morphosyntactic taggers for Polish were focused on the
same dataset, namely NKJP1M. Our shared task was aimed at providing an opportunity to
build new systems or tune existing ones to test them in a slightly different environment of
more diverse and less standardised historical data. Although the data may seem to be unusual
and atypical for everyday applications of NLP tools, the best performing solutions may be
deployed in a growing number of projects aimed at building historical corpora of various
periods of Polish.
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2. Task definition

The data for this year’s task covers 400 years of the development of the Polish language. Text
samples were drawn from three manually annotated corpora: KorBa — a corpus of the 17th
and 18th century (Gruszczyński et al. 2013, Kieraś et al. 2017, Gruszczyński et al. 2020),
a corpus of the 19th century (Kieraś and Woliński 2018), and 1M subcorpus of the National
Corpus of Polish NKJP (Przepiórkowski et al. 2012). The corpora represent three different
periods of development of Polish: Middle, New and Modern.

All the texts were marked using a historical tagset, which is similar to the tagset of Morfeusz
SGJP (Woliński 2019) with some differences, e.g.:

— the gender system is reduced to three basic genders: masculine, feminine and neuter,
however some masculine forms are marked for animacy distinction (manim1 and
manim2);

— there are three values for the number category: singular, dual (Dwie żabie upragnione
po polach biegały), and plural;

— there are special flexemes adjb, ppasb and pactb for historical “short” (non-compound)
forms of adjectives and participles (rówien, pogrzebion, pięknę, swoję, chcęcy. . . );

— additional flexeme for past participle (ppraet) was introduced (wyłysiały, przybyły);

— separate flexeme classes of so called adjectival and adverbial numerals (adjnum and
advnum) were introduced;

— there are two flexemes fut and plusq for auxiliary forms of BYĆ for future and pluperfect
tenses.

The tagset used in the task isn’t native for any of the source corpora sampled for the shared
task. It is rather a blend of all source tagsets, which was primarily developed for the purpose
of Chronofleks web application (Woliński and Kieraś 2020) aimed at visualization of Polish
inflectional phenomena over time.1

The goal of Task 2 is to disambiguate morphosyntactic interpretations and to guess the
interpretation for unknown words — exactly as in Subtask 1A of PolEval 2017 (Kobyliński
and Ogrodniczuk 2017). The text provided as input for taggers is represented as a directed
acyclic graph of morphosyntactic interpretations, as returned by Morfeusz.

What we find interesting in this task is that the texts are not homogenous since the language
changes. In fact, 17th century texts can be considered to represent a different (yet closely
related) language than contemporary Polish. Thus, information on the date of creation was
provided for each text.

1http://chronofleks.nlp.ipipan.waw.pl

http://chronofleks.nlp.ipipan.waw.pl
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3. The data

Proportions of the data sampled from the source corpora vary in training, development and
testing data. In training data the proportions are as follows: aprox. 28% represent the
Baroque corpus, 63% represent the 19th century corpus and 29% represent contemporary
data (NKJP1M). However, the development and testing sets are more biased towards the
oldest data in the overall dataset with 50% from the Baroque corpus, 30% from the 19th
century corpus and only 20% from NKJP1M. The test set was used for scoring presented
taggers, while the development set is meant to provide a preview of what to expect from the
test set. Both are guaranteed to have similar distribution of texts in time. The training set
contains the data intended for learning. In this set we provide as much data from each period
as we have available. The details of the data split are presented in Table 1.

Table 1: Data split between three periods of time for train, devel and test datasets

train devel test

# segm. % # segm. % # segm. %

Baroque 408 248 28.32% 20 005 49.99% 20 026 50.00%
19th century 613 914 42.59% 12 001 29.99% 12 001 29.97%
Contemporary 419 346 29.08% 8 010 20.02% 8 018 20.03%

Total 1 441 508 100.00% 40 016 100.00% 40 045 100.00%

Motivations for such data split is straightforward – annotation of historical data is much
more time and labour consuming and requires rarer skills from the annotators comparing
to the contemporary Polish. The same applies to automatic morphosyntactic tagging (or
disambiguation). Yet the growing number of projects aimed at building historical corpora
cause a constant need for more accurate tagging systems. Thus in the shared task our goal was
to encourage researchers to improve their systems towards tagging more diverse historical
language while taking advantage of the more resource-rich contemporary Polish.

Each file available at the task page2 corresponds to a particular text from one of the corpora.
The first line of the file contains a time marker for the text. It may be a single number denoting
the year on which the text was written (e.g. #1651) or a range (e.g. #1651:1675, meaning
that the text was written between 1651 and 1675). Sometimes only the lower limit of the
range is known (e.g. #1651: meaning after 1651). A file may contain several text samples
separated by empty lines.

Each line contains one interpretation for a segment in 7 column format:

— start position for the segment,

— end position for the segment,

— the segment,

— lemma for the corresponding lexeme,

2http://2020.poleval.pl/tasks/task2/

http://2020.poleval.pl/tasks/task2/
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— morphosyntactic tag,

— the string nps if there is no preceding space,

— the string disamb if this is the correct interpretation selected among variants provided
by the morphological analyzer or disamb_manual if the corrected interpretation was
added by a human. In the case of manually added segmentation variants all added
segments are marked as “manual” even if some of them could be recognised by the
analyser in other contexts.

Each dataset exists in two variants. In the “disamb” variant exactly one interpretation for each
segment is marked as correct (in 7th column). The “plain” variant has this column removed
together with all manual interpretations and segmentation variants. The train and devel data
sets are provided in both variants. The test set was provided only in the plain variant during
the competition and participants were expected to send the results of processing these files.
Evaluation against an undisclosed “disamb” variant was performed by the organisers.3

Example of a manual interpretation in both variants:

--- in disamb variant ---
36 37 inaczy inaczy adv disamb_manual
36 37 inaczy inaczyć fin:sg:ter:imperf

--- in plain variant ---
36 37 inaczy inaczyć fin:sg:ter:imperf

Example of a manual segmentation in both variants:

--- in disamb variant ---
271 272 więtszy więtszy adj:sg:nom:m:pos
271 272 więtszy więtszy adj:sg:voc:m:pos
271 273 więtszym więtszy adj:sg:inst:m:pos disamb_manual
271 273 więtszym więtszym ign
272 273 m być aglt:sg:pri:imperf:nwok nps

--- in plain variant ---
271 272 więtszy więtszy adj:sg:nom:m:pos
271 272 więtszy więtszy adj:sg:voc:m:pos
272 273 m być aglt:sg:pri:imperf:nwok nps

Besides the data provided by us, the participants were free to use any auxiliary data available
to the public and released on an open license.

3The gold standard for test part was made public after the competition.
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4. Scoring

A tagger is expected to split the text into a continuous stream of tokens and provide single
morphological interpretation for each token. The solutions were scored against a gold standard
corpus, which provides its own stream of tokens and interpretations. The tagger’s answer
for a given gold standard token is considered correct only if it contains a token with the
same span in the text. The interpretation for this token will be assessed correct if segment
and tag (columns 3, 5) are the same as in the corresponding interpretation marked as gold
standard. This means that the choice of the lemma is not scored (and in fact most taggers did
not produce any meaningful lemmas).

Please note that this setup means that the tagger is expected to provide exactly one interpreta-
tion for each token, otherwise the solution is rejected by the evaluation script. In other words,
the tagger is not allowed to leave any tokens without an interpretation nor to allow tokens
to remain ambiguous by marking more than one possibility (some contemporary taggers do
that).

Overall accuracy against gold standard corpus was assumed as the evaluation metric for the
contest. In the following section we show also some interesting partial marks: accuracy
achieved on tokens which are known to the morphological analyser, accuracy on unknown
(“ign”) tokens, and accuracy on tokens which are known to the analyser, yet annotators
decided to provide a different interpretation in the gold standard corpus. This last case is
often not taken into account by contemporary taggers as marginal (0.25% in NKJP1M). In
historical texts this situation is more common (1.45% of test data in this task).

Some of the taggers do not use the provided morphological graph at all nor do they work
by choosing from provided interpretations. Yet, differences between these dictionary based
categories are clearly visible.

5. Results

Eight solutions for this task were submitted by four teams representing both academic and
industrial research groups. Three variants of the KFTT tagger were construed by Krzysztof
Wróbel (Jagiellonian University). Two models disguised under the name of „Simple baselines”
are a work of Piotr Rybak and Agnieszka Ciepielewska (Allegro.pl, Melodice.org). The author
of “CMC Graph Heuristics” is Wiktor Walentynowicz (Wrocław University of Science and
Technology). Alium was submitted by Marcin Bodziak (no affiliation given).

The results achieved (Table 2) are far better than we anticipated. Tagging of historical Polish
can be expected to be more difficult than tagging contemporary language: the tagset includes
more features, some of them describing very rare phenomena; the number of tokens unknown
to the morphological analyser is larger (2.25% vs. 1.26%); the word order is less stable (with
many discontinuous constructions). Yet, the results compare favourably to the results of
PolEval 2017 Task 1(A) for contemporary language.4 The best overall accuracy is 95.7%

4http://2017.poleval.pl/index.php/results/

http://2017.poleval.pl/index.php/results/
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Table 2: Competition results for Task 2 sorted by overall accuracy

System
Accuracy

overall on known on unknown manual not ign

KFTT train+devel 0.9573 0.9607 0.8102 0.6781
KFTT train 0.9564 0.9600 0.7991 0.6661
KFTT train+devel wo_morf 0.9563 0.9595 0.8191 0.6730
Simple Baselines: XLM-R 0.9499 0.9562 0.6770 0.6850
Simple Baselines: COMBO 0.9284 0.9363 0.5838 0.5232
CMC Graph Heuristics 0.9121 0.9214 0.5072 0.1670
Alium-1000 0.8880 0.8985 0.4306 0.2427
Alium-1.25 0.8880 0.8985 0.4295 0.2427

compared to 94.6% of PolEval 2017. The most striking improvement lays in tagging tokens
unknown to the morphological analyser: 81.9% compared to 67% in PolEval 2017.

Table 3 shows accuracies of each solution on parts of the test set drawn from respective
historical periods. As can be seen, variants of KFTT win in most categories. In overall accuracy
“KFTT train+devel” wins on texts from all periods. However, the variant not using tokenisation
provided by Morfeusz (wo_morf) has better results in guessing tags for unknown tokens of
historical text.

KFTT and “Simple baselines: XLM-R” show rather similar results, which is understandable,
since both are based on the XLM-R model. The two solutions differ mainly in the method for
tokenisation (see authors’ texts in this volume). The difference in results is the largest for
oldest texts. KFTT is also much better at guessing unknown tags. Strikingly, “Simple baselines:
XLM-R” is better at guessing out-of-dictionary tags for known tokens. There is one category
in which “XML-R” actually won: accuracy on known tokens of contemporary text (but the
difference is just one more segment done correctly by “XML-R”).

A very thrilling element in Table 3 is the accuracy over 0.97 for contemporary texts both in
the case of KFTT and “Simple baselines: XLM-R”. The contemporary part of the test set is
admittedly tiny, yet we see here definite progress in tagging contemporary Polish.

6. Conclusions

These results require a further study, which will hopefully lead to interesting discussions
during the PolEval 2020 conference session, but generally we can conclude that the presented
systems not only improve on tagging historical texts, but provide better taggers also for
contemporary Polish, which is a substantial achievement. The best performing systems have
crossed the barrier of 97% accuracy for contemporary data which leaves very little (if any)
room for further improvement and leads us to conclusion that the problem of morphosyntactic
tagging for the contemporary Polish language may be in fact successfully solved at last.
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Table 3: Results by historical period

System Period
Accuracy

overall known unknown manual not ign

KFTT train+devel Baroque 0.9435 0.9483 0.7943 0.6574
19th c. 0.9694 0.9715 0.8324 0.6316
Contemp. 0.9737 0.9748 0.8778 0.8043

KFTT train Baroque 0.9422 0.947 0.7943 0.6574
19th c. 0.9692 0.9718 0.7933 0.5789
Contemp. 0.9727 0.9741 0.8444 0.7609

KFTT train+devel wo_morf Baroque 0.942 0.9464 0.8054 0.6505
19th c. 0.969 0.9709 0.8436 0.6316
Contemp. 0.9733 0.9745 0.8667 0.8043

Simple baselines: XLM-R Baroque 0.9302 0.9392 0.6535 0.6620
19th c. 0.9672 0.9715 0.6816 0.6667
Contemp. 0.9733 0.9749 0.8333 0.8043

Simple baselines: COMBO Baroque 0.9091 0.92 0.5744 0.5139
19th c. 0.9452 0.951 0.5587 0.4561
Contemp. 0.9514 0.9542 0.7 0.6087

CMC Graph Heuristics Baroque 0.8837 0.8973 0.4636 0.1806
19th c. 0.9354 0.9412 0.5531 0.01754
Contemp. 0.9482 0.9508 0.7222 0.1957

Alium-1000 Baroque 0.8659 0.8804 0.4209 0.2616
19th c. 0.9087 0.9159 0.4302 0.1404
Contemp. 0.9123 0.917 0.5 0.2174

Alium-1.25 Baroque 0.8662 0.8804 0.4304 0.2616
19th c. 0.9085 0.9159 0.419 0.1404
Contemp. 0.9117 0.917 0.4444 0.2174
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Abstract

This paper presents winning solution to PolEval 20201 morphosyntactic tagging of Middle,
New and Modern Polish task. The goal of the task is to disambiguate morphologic analysis.
The solution has a full neural network pipeline (tokenization and morphosyntactic tagging)
from raw text to annotated text. It does not require any external dependencies. However,
the output from morphological analyzer can be exploited to increase the scores. Finally, the
tagger exceeds the threshold of 97% obtaining the score of 97.3% for contemporary texts.
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1. Introduction

Manning (2011) reports that the state-of-the-art part-of-speech taggers for English have
obtained 97.3% of accuracy, which is similar to a human inter-annotator agreement (97%). In
2016, for Polish taggers “reaching the goal of 97% seemed very distant” (Kobyliński and Kieraś
2016). However, the next year thanks to PolEval competition (Kobyliński and Ogrodniczuk
2017) new deep learning approaches arose reaching 94% of accuracy (Krasnowska-Kieraś
2017, Wróbel 2017). Kobyliński et al. (2018) used meta-algorithm to achieve 94.7%.

The above scores are not directly comparable because of different procedures of preparing
training and test data and the corpus itself. English POS tagging problem is simpler because
there are several dozen tags and in Polish about 1000 is used.

The lemmatization problem was not properly tackled so far. The most common solution is to
randomly pick a lemma from interpretations from a morphological analyzer consistent with
the predicted tag. KRNNT (Wróbel 2017) improves this process by learning the most common
lemma for text form and tag pair.

1http://2020.poleval.pl

http://2020.poleval.pl
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Most of the taggers tokenize text by finding the shortest path in the output of the morphological
analyzer. Waszczuk et al. (2018) solve this problem by using a conditional random field
directly on directed acyclic graphs (DAG) representing possible tokenizations.

In this work, finally, we exceeded the score of 97% accuracy for modern texts. The tokenization
is tackled by a character language model and recurrent neural networks (RNN) allowing scores
higher than oracle on DAGs. The tagging process is performed by a multilingual transformer
model XLM-RoBERTa (Conneau et al. 2020).

Trained models and code needed for result reproduction are available online.2

2. Data

The manually annotated corpus was created by sampling three corpora representing three
periods of development of Polish (Middle, New, and Modern): KorBa — a corpus of 17th and
18th century, a corpus of 19th century, and 1M subcorpus of the National Corpus of Polish.

The texts were annotated using a historical tagset similar to Morfeusz SGJP (Woliński 2014,
Kieraś et al. 2017). The texts are represented as directed acyclic graphs of interpretations, as
returned by Morfeusz. Each text is also annotated by the date of creation.

In comparison to other corpora, e.g. National Corpus of Polish (NKJP), texts are not split into
sentences. Table 1 presents the number of texts, tokens, the average number of tokens in
texts, and the number of unique tags. NKJP has a similar number of unique tags: 926. Table 2
shows the distribution of tokens regarding time in training, development, and testing dataset.
The development and testing datasets have a similar distribution of texts in time.

Table 1: Number of texts, tokens, the average number of tokens in texts, and the number of unique tags
for training, development, and test data

train dev test

number of texts 10 755 244 280
number of tokens 1 441 508 40 016 40 045
average number of tokens in text 134 164 143
unique tags 994 571 582

Table 2: Distribution of texts by time in training, development, and test data

Subcorpus Period train dev test

KorBa — a corpus of 17th and 18th century Middle 28.3% 50.0% 50.0%
A corpus of 19th century New 42.6% 30.0% 30.0%
1M subcorpus of the National Corpus of Polish Modern 29.1% 20.0% 20.0%

2https://github.com/kwrobel-nlp/kftt/

https://github.com/kwrobel-nlp/kftt/
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3. Methods

The solution consists of two separate modules: tokenization and tagging. Tokenization can be
performed on raw texts (without information from morphological analysis) or using a graph
of interpretations from Morfeusz.

The tokenization module has been implemented using recurrent neural networks operating
on characters. The first layer is a character-based language model working forward and
backward using RNNs. The second layer is bidirectional RNN with a conditional random field
(CRF) on top. The network answers a question if after every character should be the end of
the token.

In the first version, on the input of the tokenization network are only characters. The
second version exploits information from Morfeusz by appending to each character additional
information, i.e. potential end of token, potential tags, and time of creation.

Table 3 presents output from Morfeusz with Baroque dictionary for word zaś. It can be
tokenized as one token zaś or two tokens za and ś. Table 4 shows features generated for each
character of this word. For example for character ś the joined tags feature is constructed
from tags of every segment ending with this character: zaś and ś.

Table 3: Output from Morfeusz with Baroque dictionary for word zaś

start end segment lemma tag

1 2 za za part
1 3 zaś zaś conj
1 3 zaś zaś part
2 3 ś być aglt:sg:sec:imperf:nwok nps

Table 4: Additional features generated for characters in word zaś

Features z a ś

is space before True False False
joined tags — part aglt:sg:sec:imperf:nwok_conj_part
joined POS — part aglt_conj_part
century 17 17 17
is ambiguous False True False

The tagging module operates on tokenized texts. It is a transformer model with a token
classification head on top. The transformer returns contextual embedding of each token, then
a linear layer with softmax activation returns normalized scores for each tag seen in training.
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4. Evaluation

Tokenization is evaluated using similar metrics as tagging. E.g. not splitting zaś to two tokens
za and ś generates one false positive and two false negatives. Recall here is accuracy in
tagging, so tagger accuracy cannot be higher than tokenization recall.

The metrics for tagging are consistent with Radziszewski and Acedański (2012) with Accuracy
(accuracy lower bound), Acc on known (accuracy lower bound for known words), Acc on
unknown (accuracy lower bound for unknown words). The main metric in the competition is
accuracy – a percentage of all tokens that match tagger segmentation with the correct tag.
The accuracy is also provided for known and unknown tokens for a morphological analyzer.
Additionally, the organizers report Acc on manual – accuracy for manually tokenized words
and manually appended correct interpretations to interpretations from the analyzer.

5. Experiments

The training was performed using only data provided by organizers.

The tokenization module uses Flair embeddings (Akbik et al. 2018). The training lasts 24
hours on GPU Tesla V100 with a learning rate of 0.1 and a hidden size of RNN 256.

For the tagging module, the transformer model has been chosen as a multi-language XLM-
RoBERTa large version as it is one of the best models as stated in a leaderboard of KLEJ
Benchmark3 (Rybak et al. 2020) – a set of nine evaluation tasks for the Polish language
understanding. The model was fine-tuned for 20 epochs using learning rate 5e-5, maximum
sequence length 512, max gradient norm 1.0, without warmup steps. The training takes 4
hours using GPU Tesla V100. Two versions were trained: using only training data (train)
and using training and development data (train+devel).

Table 5 presents precision, recall and F1 for tokenization. The proposed solution obtains
better scores than the shortest path method, which is used in most of the taggers. In terms
of recall and F1, the solution is also better than oracle on Morfeusz analysis. The oracle is
the best path in a DAG. From a practical point of view, the new solution deals correctly with
frequent word miałem (eng. I had).

Table 5: Scores of two tokenization modules compared with shortest path strategy and oracle (the best
path)

Method Precision Recall F1

with morf 99.74% 99.76% 99.75%
without morf 99.72% 99.67% 99.70%
shortest path 99.48% 99.23% 99.35%
oracle 99.83% 99.63% 99.73%

3https://klejbenchmark.com/leaderboard/

https://klejbenchmark.com/leaderboard/
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Table 6 shows possible interpretations where shortest path tokenization method forces rare
interpretation miałem (eng. coal dust).

Table 6: Output from Morfeusz for word miałem

start end segment lemma tag

1 2 miał mieć praet:sg:m1.m2.m3:imperf
1 3 miałem miał subst:sg:inst:m3
2 3 em być aglt:sg:pri:imperf:wok

The test data is tokenized in 14s and tagged in 16s using GPU Tesla V100 (time for tagging is
measured using batch size 1, so can be easily optimized). The full pipeline for KRNNT takes
18.4s using only CPU i7-7700HQ.

Table 7 shows official results for top 5 submissions. KFTT obtains the highest accuracy 95.7%.
By using more training data the score increases by 0.1 percentage point (train+devel versus
train). KFTT version that works on raw text without using morphological analysis (wo_morf)
decrease accuracy by 0.1 percentage point. This version has the highest score on unknown
words – because the tokenizer has no information whether a segment is known for analyzer
and model did not focus on them.

Table 7: Official results for the top 5 submissions

System
Accuracy

overall known unknown manual not ign

KFTT train+devel 95.73% 96.07% 81.02% 67.81%
KFTT train 95.64% 96.00% 79.91% 66.61%
KFTT train+devel wo_morf 95.63% 95.95% 81.91% 67.30%
Simple Baselines: XLM-R 94.99% 95.62% 67.70% 68.50%
Simple Baseline: COMBO 92.84% 93.63% 58.38% 52.32%

Table 8 presents the scores by the period of text creations. We can finally announce that there
is a tagger that exceeded the threshold of 97% for contemporary Polish. The worst results are
for Middle period Polish development. Unfortunately, the feature related to the time of text
creation has not improved the tagging module.

Table 8: KFTT train+devel scores for each period

Period
Accuracy

overall known unknown manual

Middle 94.35% 94.83% 79.43% 73.87%
New 96.94% 97.15% 83.24% 78.39%
Modern 97.37% 97.48% 87.78% 84.07%
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6. Conclusions

The paper presents state-of-the-art morphosyntactic tagger for Polish, the winner of PolEval
2020. It exceeds the threshold of 97% for contemporary Polish. The full neural network
version (which accuracy drops by 0.1 percentage point) does not require any dependencies so
it is easy to run on computer clusters.

In comparison to KRNNT, KFTT uses contextual embeddings, training and prediction are made
not on separate sentences, so the context is much wider, tokenization is trainable, there are
no dependencies to external libraries.

The future works may focus on using other transformer models, e.g. Polish RoBERTa (Dadas et
al. 2020), which is adjusted to the Polish language and should perform faster. A transformer
model may be further tuned on historical texts. Information from a morphological analyzer
could be exploited also in the tagging module. A transformer model could be fine-tuned using
other annotated corpora.
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Abstract

This paper presents our solution of the PolEval 2020 task on Morphosyntactic Tagging of
Middle, New and Modern Polish. The unique challenge posed by this task was to use the
additional information about the year in which given text was written. We evaluated two
approaches on how to tackle this problem. Additionally, we trained a BERT-based classifier
which proved to perform much better than a solution based on LSTM networks and it ranked
second in the official evaluation obtaining accuracy of 94.99%.

Keywords
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1. Introduction

The morphosyntactic tagging is one of the most classic and extensively researched tasks in
Natural Language Processing (NLP). Over the years many different methods were used to
solve it. Currently, the best results for English are achieved by the BERT-based (Devlin et al.
2019) models which use extensive pretraining to improve their quality.

In this work, we present our solution to the PolEval 2020 task on Morphosyntactic Tagging of
Middle, New and Modern Polish. The rest of the paper is organized as follows. In Section 2,
we describe our approach to solving the task. In Section 3, we conduct the evaluation of our
method and finally we conclude our work in Section 7.

2. Method

The proposed task differs from a typical part-of-speech tagging. The goal is to find the correct
interpretation of how given word should be tokenized into segments and then to assign the
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correct morphosyntactic tag for each segment. To avoid building two separate models, we
decided to transform the task into the classical part-of-speech tagging problem and use the
off-the-shelf system to solve it.

2.1. Data processing

Data provided by organizers consists of a manually annotated subset of three corpora, a corpus
of 17th and 18th century language (Kieraś et al. 2017), a corpus of 19th century language
(Kieraś and Woliński 2018), and the National Corpus of Polish (Przepiórkowski et al. 2012).
Each word is represented as its morphosyntactic interpretations, as returned by Morfeusz
(Woliński 2014). Additionally, for most documents, the year when the text was written is
provided.

To transform the morphosyntactic disambiguation task into morphosyntactic tagging we used
the following approach. First, for each word we took all of its interpretations. Then, we
found the minimal set of subwords from which it is possible to reconstruct all interpretations.
For example the word ABCD with possible interpretations [(A, BCD), (ABC, D)] will be
transformed into [A, BC, D] subwords. Finally, morphosyntactic tag for each subword was
taken from its true interpretation.

2.2. COMBO

As a first baseline, we used COMBO (Rybak and Wróblewska 2018) and train it with default pa-
rameters using the dataset described in the previous paragraph. We used the 256-dimensional
hidden layer for the final classifier. Next, we evaluated two methods of including information
about the year in which the given text was written. First, we encoded the decade in which the
text was created as an 8-dimensional embedding and concatenated it with word embedding
(later called Word-level Augmentation). Alternatively, we appended the decade in which
the text was created to the document as an additional segment (later called Document-level
Augmentation).

2.3. XLM-RoBERTa

According to the KLEJ Benchmark1 (Rybak et al. 2020) the two top-performing models for Pol-
ish language understanding are Polish RoBERTa (Dadas et al. 2020) and XLM-RoBERTa (Con-
neau et al. 2020). We used the latter and trained the tagger released within the transformer
library (Wolf et al. 2019). We kept default parameters, except for number of epochs which
we set to 50.

1https://klejbenchmark.com/leaderboard/

https://klejbenchmark.com/leaderboard/
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Table 1: Evaluation results of described models on a validation set. We used accuracy as an evaluation
metric. The best scores are in bold.

Model
Accuracy

overall known unknown manual not ign

COMBO 92.82 93.59 56.87 57.66

COMBO + Word-level Augmentation 93.08 93.88 55.67 57.52

COMBO + Document-level Augmentation 92.99 93.78 55.79 57.80

XLM-RoBERTa 94.58 94.84 82.68 77.90

2.4. Postprocessing

During the inference, we needed to transform the results of the tagger back to the morphosyn-
tactic interpretations. We used simple heuristic and merged subsequent subwords with the
same predicted tag into a single segment. We didn’t verify if the resulting interpretation was
one of the originally returned by Morfeusz.

3. Experiments

We evaluated all proposed models on the validation dataset. The results are summarized in
Table 4. Both Word- and Document-level Augmentation increased the overall performance
of the models. Interestingly, the improvement in only present for words which are known
by the morphological analyser. The Word-level Augmentation obtained better scores than
Document-level Augmentation (93.08 vs 92.99).

The XLM-RoBERTa model outperformed the COMBO model by a wide margin (94.58 vs 92.82).
It was better for both known and unknown words. The difference is especially large for the
latter (82.68 vs 56.87).

4. Conclusions

In this work, we described two simple morphosyntactic disambiguation systems for Polish
language. The system based on XLM-RoBERTa proved to be more effective and ranked second
in the official evaluation. We also evaluated two methods of including text creation year and
showed its positive impact on tagger quality.
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Abstract

In this paper, we present our approach to solving Task 2 from the PolEval 20201 competition.
We briefly present the architecture used and the process of preparing the submitted solution.
In the summary of the paper, we present our ideas for the development of this solution.
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1. Introduction

At this year’s edition of PolEval, Task 2 was “Morphosyntactic tagging of Middle, New and
Modern Polish”. Morphosyntactic tagging is one of the most fundamental tasks in NLP,
mainly because many other tasks use the result of morphosyntactic disambiguation. Over the
past few years, Polish morphosyntactic tagging has focused on the development of taggers
for contemporary language. The main training and test dataset was the one million word
subcorpus of the National Corpus of Polish (Przepiórkowski et al. 2012), further NKJP. This
task has been extended to historical texts from the corpus KorBa (17th and 18th century;
Kieraś et al. 2017) and the 19th-century Polish language corpus (Kieraś and Woliński 2018).

Changing the standard task of morphosyntactic disambiguation requires also the need to chose
token segmentation. The role of the method solving the task is therefore both to indicate the
correct morphological interpretation and to select the appropriate token segmentation, from
those proposed in the data. The dataset is in the form of acyclic graphs, consistent with the
standard from the Morfeusz2 (Woliński 2014) analyzer.

1http://2020.poleval.pl

http://2020.poleval.pl
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2. CMC tagger

Our solution for the competition task was based on the CMC tagger (Walentynowicz et al.
2019). It combines the neural model based on multi-task learning, which is an input to a
heuristic method of decision making from those proposed by the morphological analyzer. The
code of our solution is available in the remote repository.2

2.1. Computational part

The calculation part of the CMC tagger can be divided into two modules: an input module and
a processing module. In the input module, the sequence of tokens is changed into floating-
point vectors, which are then processed by the processing module. In the input module,
the token receives four representations, which are concatenated to be one vector. These
representations are made up of fastText (Bojanowski et al. 2017) vector from KGR10 model3

(Kocoń 2018), suffix character embedding vector, suffix embedding vector, and Brown cluster
(Brown et al. 1992) representation vector.

2.2. Decision-making part

The decision-maker part has two roles – it checks the compliance with the tagset generated by
the prediction network and makes the final tag selection. Tag validation is based on verifying
the presence of attributes against the predicted grammar class. The superfluous attributes are
set to NONE value. If the needed attribute does not have a value, no steps are taken as it will
be selected from among the possible tags proposed by the analyzer. The corrected tag from
the prediction is compared, based on the Levenshtein distance, to the tags given as a set of
possible tags for the given token. The closest one is selected as the correct one.

2.3. Segmentation heuristics

We decided to take a heuristic approach to the task of selecting the token segmentation.
Segmentation was about choosing the selection of paths in the graph representing the texts.
We prepared heuristics, which work on simple principles. The first one was always choosing
the shortest path in the graph, the second was choosing the longest path, and the third was
based on the statistics from the training set. The statistical heuristics identified cases of
ambiguity in tokenization, and then the decision was made based on the frequency of selected
paths in a given case. In other words, the heuristics select those paths in tokenization that
were more frequently encountered in the training set. If a given case did not occur in the
training set, the longest possible path was selected.

2https://gitlab.clarin-pl.eu/syntactic-tools/morphological/cmc-tagger/-/tree/
cmc-heuristics

3http://hdl.handle.net/11321/606

https://gitlab.clarin-pl.eu/syntactic-tools/morphological/cmc-tagger/-/tree/cmc-heuristics
https://gitlab.clarin-pl.eu/syntactic-tools/morphological/cmc-tagger/-/tree/cmc-heuristics
http://hdl.handle.net/11321/606
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3. Experiments

During the experiments, we studied the effectiveness of the heuristics of segmentation selection
and differences in the ways of teaching models. The models were trained in three variants:
on specific period dataset only, on the whole dataset, and the trained model on all data for
7/12 of the learning time and fitted for 5/12 of the learning time on specific period data.

A summary of these experiments can be found in Tables 1–3. We do not include the results of
statistical heuristic, because they came close to the results of long path heuristic, but always
slightly worse. The measures were obtained using an evaluation script made available in the
content of the task on the competition website. All models were trained on the training set
and tested on the validation set according to the division given on the task website.

Table 1: Results for models with short path heuristic

Measure 17 ALL_17 19 ALL_19 20 ALL_20 COMB ALL_CMB

Overall 82.96% 84.03% 92.19% 92.18% 92.81% 93.75% 87.70% 88.42%
Known 84.15% 85.07% 92.81% 92.76% 93.47% 94.38% 88.64% 89.27%
Unknown 40.84% 47.07% 49.41% 51.18% 49.59% 52.07% 43.85% 52.07%
Manual 29.97% 33.20% 41.67% 40.26% 38.96% 40.26% 33.31% 40.26%

Table 2: Results for models with long path heuristic

Measure 17 ALL_17 19 ALL_19 20 ALL_20 COMB ALL_CMB

Overall 87.59% 88.68% 92.89% 92.94% 92.91% 93.88% 90.25% 91.00%
Known 88.90% 89.85% 93.52% 93.54% 93.57% 94.52% 91.24% 91.91%
Unknown 40.84% 47.07% 49.41% 51.18% 49.59% 52.07% 43.85% 48.63%
Manual 30.37% 33.50% 41.67% 44.17% 38.96% 40.26% 33.58% 40.26%

Table 3: Results for models with transfer learning

Measure Short 17 Long 17 Short 19 Long 19 Short 20 Long 20

Overall 84.10% 88.83% 92.82% 93.62% 93.47% 93.63%
Known 85.14% 90.00% 93.41% 94.22% 94.09% 94.28%
Unknown 46.89% 46.89% 51.76% 51.76% 52.89% 52.89%
Manual 33.10% 33.60% 44.17% 44.17% 40.69% 40.69%

The Overall result refers to the categorical accuracy for all tokens. Known only for tokens
that had possible morphological interpretations. Unknown is a measure for out-of-vocabulary
tokens. Manual is a measure for tokens that lacked the correct morphological interpretation
among those proposed by the analyzer.

In Tables 1 and 2, labels express the type of model and a subset of data on which it was trained
and validated. XX – the model was trained and validated on a set of XX only. ALL_XX – the
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model was trained on a whole dataset from all periods and validated on a set of XX. COMB
is the result of a multitagger combined from models 17, 19, 20. ALL_CMB is the result of
a tagger trained on all data and validated on the full set. In Table 3, the labels express the
type of heuristics and the period of data on which the model was fitted and validated.

Models that have marked results by italic font have been selected as models forming a mul-
titagger, which have generated results for the test set in the task. The results of this model
obtained on the test set are presented in Table 4.

Table 4: Results for submission model in the test set

Measure Final multitagger

Overall 91.21%
Known 92.14%
Unknown 50.72%
Manual 16.70%

4. Conclusions

Our proposed method presents the possibility of extending the architecture from a standard
morphosyntactic tagging task to a combined tagging and segmentation task. However, the
results are not satisfying. The most sensitive element is the heuristics of segmentation
selection – they do not use contextual information. We plan to change this in a future version.
The second element we want to add is a graph reanalysis module to improve the results
among known words for which there was a lack of interpretation and connect a morphological
guesser so that out-of-vocabulary words have preliminary morphological analysis proposals.
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Abstract

This paper reports on the results of the first edition of PolEval 2020 Shared Task focused on
Word Sense Disambiguation (WSD). One of the main contributions of this shared task is the
introduction of a new independent dataset prepared on the basis of an updated sense inventory
compatible with plWordNet 3.2. A new wordnet-based sense inventory opens up a lot of
opportunities for the methods that work in the open-domain setting where the texts usually are
not limited to predefined domains and domain-specific knowledge. The design of our shared
task follows mainly the style of the well-known SENSEVAL and SemEval competitions aiming
at all-words WSD task. We present a general statistical view on available development and
test data, describe the properties of a dedicated knowledge-base, and are officially announcing
the results of the solutions submitted to the competition. We also highlight our future work
on data unification for the task of WSD.

Keywords

natural language processing, word sense disambiguation, knowledge bases, wordnets, Polish
language

1. Introduction

The Word Sense Disambiguation (WSD) has been proven to be an important part of Natural
Language Processing (NLP) affecting many tasks, and especially in the area of computational
semantics the lexical ambiguity problem. A word may express multiple lexical meanings
(called also word senses or shortly senses) and these meanings can be either homonymous
or polysemous. Lexical polysemy (Pustejovsky and Boguraev 1996) occurs when a word
can be associated with multiple but semantically interrelated senses. On the other hand,
homonymy is the accidental identity of word-forms with no semantic relatedness between
senses. Homonyms have different etymology and should be treated as completely different
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words despite having the same word form. Such a kind of ambiguity might be easier for
automated disambiguation as homonymous meanings usually occur in significantly different
linguistic contexts (e.g. frequently co-occurring words or topics).

Word Sense Disambiguation is still an open NLP problem mainly because of the lack of
large-scale sense-annotated training corpora. The available training resources built for other
languages (e.g. SemCor; Landes et al. 1998) have been usually accused of having scarce and
imbalanced data to train a good supervised model mainly due to the most frequent sense bias.
This directly arises from the natural sense distribution in textual corpora. On the other hand,
the recent advances in the area of language modeling, especially with the help of deep neural
networks and transfer learning suggest that there might be other solution to this problem.

Following the style and design of well-known SENSEVAL (Edmonds and Cotton 2001) and
SemEval (Agirre et al. 2008) competitions we decided to propose the first shared task on
Polish word sense disambiguation.

2. Previous research

WSD is often treated as a sequence classification problem solved by supervised Machine
Learning techniques. However, as it was mentioned in the introduction, such an approach
requires a heavy workload on handcrafting language resources, mainly sense-annotated
corpora, in order to prepare a robust WSD system. The existing sense-annotated corpora
do not usually cover less frequent senses which makes them less useful from the practical
perspective.

In order to train a supervised WSD model hundreds of manually disambiguated training
examples of word occurrences are needed for every single word sense. A typical corpus has
a very imbalanced distribution of senses. Thus, it is very difficult to find usage examples of
rare senses, even if we prepare a very large corpus.

In the last three decades, the researchers were looking for other solutions than supervised
approaches trying to depart from the limitations of the latter. Such approaches as (Lesk 1986,
Banerjee and Pedersen 2002, Agirre and Soroa 2009, Agirre et al. 2014, Moro et al. 2014)
rely on linguistic knowledge sources like dictionaries or wordnets (lexical semantic networks)
– also called sense inventories – that provide some insight about word senses and relations
holding between them.

Many different Machine Learning algorithms with their problem-specific extensions have
been already applied for WSD task. Decision tree (DT; Brown et al. 1991), decision list
(DL; Yarowsky 1994), naïve Bayes classifier (NB; Gale et al. 1992) and k-nearest-neighbour
algorithm (kNN; Ng and Lee 1996), or support vector machines (SVM; Lee and Ng 2002)
were initially used to train supervised models (e.g. Baś et al. 2008).

With the recent advances of neural language modeling and transfer learning new neural models
were successfully applied to WSD task for English language (Kågebäck and Salomonsson
2016, Raganato et al. 2017, Luo et al. 2018, Huang et al. 2019, Kumar et al. 2019).
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3. Task description

After analysing the previous research and recent word sense disambiguation trends, we
decided to propose two distinct variants of our shared task. The first variant has been
called Fixed Competition. This type of competition addresses mainly the weakly supervised
methods and knowledge-based approaches. The main idea was to encourage the existing
NLP community to design new disambiguation methods that do not require labour-intensive
manual sense annotation of textual corpora. The supervised models are usually strongly
correlated with most frequent senses and express low vocabulary coverage. Alternatively, one
may use available sense-focused knowledge bases e.g. wordnets as knowledge sources for
designing new word sense disambiguation algorithms. Thus, the Fixed Competition variant
might be helpful for low-resource languages especially those, for which it is possible to build
a word sense knowledge-base by using existing wordnets and also interlingual links. In this
variant we restricted the usage of the available knowledge sources mainly to wordnets and
raw unstructured textual corpora as they are relatively easy to obtain. We also did not allow
to use domain-specific sense annotated data except the data available in the Polish wordnet.
Summing up, the participants could use only the following resources:

— plWordNet (in Polish: Słowosieć) version 3.2 (Maziarz et al. 2016) – the Polish wordnet;
its senses with their lexico-semantic structure as well as their glosses (short definition-
like descriptions of senses) and usage examples,

— raw unstructured textual corpora with no sense annotations (e.g. for sense induction
methods or semi-supervised learning).

The second type of competition called Open Competition was focused on designing the best
possible solution for WSD using all available knowledge and data sources. In this variant, we
also encouraged the participants to use plWordNet, but the main focus was put on available
sense annotated corpora including the corpora prepared for other languages as well as any
linking of plWordNet with Linked Open Data. We suggested the following development
resources:

— sense annotated corpora, mainly Składnica (Hajnicz 2014) and plWordNet glosses and
usage examples, but also other sense annotated corpora prepared for any language,

— plWordNet mapping to Linked Open Data, mainly those originating from Wikipedia1 and
ontologies like SUMO ontology (Niles and Pease 2003) or YAGO ontology (Suchanek et
al. 2008),

— existing thesauri, valency dictionaries and their mapping to wordnet prepared for any
language e.g. Polish Walenty (Przepiórkowski et al. 2014), English FrameNet (Baker et
al. 1998) or VerbNet (Schuler 2005).

The initial development data in a simplified format was published for the participants at
https://gitlab.clarin-pl.eu/ajanz/poleval20-wsd.

1https://pl.wikipedia.org/

https://gitlab.clarin-pl.eu/ajanz/poleval20-wsd
https://pl.wikipedia.org/


68 Arkadiusz Janz, Joanna Chlebus, Agnieszka Dziob, Maciej Piasecki

4. Datasets

In this section we precisely describe the current state of the Polish language resources related
to the WSD task with a simple statistical view on their properties.

4.1. Development data

The previous sense annotated corpora e.g. Składnica, or Polish Corpus of Wrocław University of
Technology (KPWr; Broda et al. 2012) prepared for WSD task were annotated with plWordNet
2.1 (Maziarz et al. 2014) sense inventory which makes them quite outdated. For the purpose
of this competition, we decided to upgrade sense inventory to plWordNet 3.2 and suggest it2

as a dedicated development dataset and annotation resource. This decision was made due to
significant differences between 2.1 and 3.2 versions. Table 1 presents a statistical analysis of
the differences between old and new sense inventories.

Table 1: Statistical analysis of Polish wordnet-based sense inventories

Feature plWordNet 2.1 plWordNet 3.2

number of distinct lexical units 206 567 286 804
number of distinct multi-word lexical units 53 752 70 019
number of distinct synsets 151 252 221 101
number of monosemous lemmas 113 129 141 343
number of polysemous lemmas 33 507 49 049
number of monosemous lemmas (multi-word only) 43 906 56 415
number of polysemous lemmas (multi-word only) 3 898 5 171
number of lexical units with definition or any usage example 37 207 145 901
number of lexical units without definition or any usage example 169 360 140 903
average length of utterance (definition or example) 12.56 11.54
average number of senses per lemma (polysemous only) 2.79 2.96

The other part of our development data was based on a sense annotated corpus called
Składnica (Hajnicz 2014). This part of the development data was intended for the Open
Competition variant only. The corpus was annotated with plWordNet 2.1 senses making it
slightly incompatible with the current sense inventory and our evaluation data. Still, many of
the plWordNet 2.1 senses occurring in Składnica should be compatible to some extent with
the plWordNet 3.2 senses. The existing compatibility issues will be solved in near future due
to the work of CLARIN-PL3 – see Section 7.

2 We did not use the most contemporary version of that time, i.e. 4.1, due to existing mapping between plWordNet
and Walenty which was not upgraded to the version 4.1.

3http://clarin-pl.eu

http://clarin-pl.eu
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4.2. Evaluation data

We introduced two distinct evaluation datasets for the purpose of the competition:

— “The Adventure of the Speckled Band”, henceforth SPEC corpus,4 the eighth Conan
Doyle’s story about the adventures of the famous character named Sherlock Holmes –
based on the modern translation of the original and expanded to an annotated language
resource (Błaszczak et al. 2019),

— KPWr–100 – a new fraction of 100 distinct documents existing in the Polish Corpus of
Wrocław University of Science and Technology.

As it was mentioned earlier, the datasets were manually annotated using an updated sense
inventory based on plWordNet 3.2. To annotate the data we trained three linguists as
annotators. They were already familiar with the overall design and the structure of Polish
wordnet because of their involvement in the process of plWordNet development from the very
beginning. All the data was annotated independently and inner-annotator agreement was
calculated. The Positive Specific Agreement (PSA) scores for SPEC and KPWr-100 corpora
were 0.602 and 0.678, respectively.

Annotation guidelines

The guidelines presented here were designed in a way that takes into account the nature of
Polish language resources and existing NLP tools. For instance, for the purpose of WSD task,
we introduced several rules for handling multi-word expressions as they are an important
contextual signal for disambiguation.

We assumed the following initial set of annotation rules:

— a gerund is always lemmatized to its initial bare infinitive form of its source verb and
annotated by assigning a specific sense associated with this verb,

— participles are following the same rule as gerunds, i.e. annotated by assigning correct
senses representing their source verbs,

— adjectives and adverbs in comparative and superlative forms are annotated by assigning
the senses that represent their base positive forms e.g. najpiękniejszy ‘most beautiful’→
piękny ‘beautiful’→ piękny 1.adj.

In the case of multi-word expressions (MWE), e.g. czerwona kartka ‘red card’, each of its
constituents should be annotated with a particular sense of recognized MWE ignoring the
senses of these constituents. Only continuous MWE, i.e. such that all their component words
occur in the text in one continuous sequence, were distinguished and annotated with their
senses in the corpus. Specific verbs that are joined with agglutinate token się were also
considered as multi-word expressions and annotated with correct senses.

To handle special expressions we decided to introduce a set of annotation tags to mark
exceptional cases in a systematic and consistent way. The annotation tags were available

4https://clarin-pl.eu/dspace/handle/11321/667

https://clarin-pl.eu/dspace/handle/11321/667
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only for the annotators and not included in the version available during the competition. The
following set of tags was used:

— OtherSense – the tag should be used when a word or expression being disambiguated
cannot be annotated due to the lack of its specific senses in our sense inventory; this
tag is very useful since it signals the need for extension of the initial sense inventory,

— TaggingError – used to handle cases when the disambiguated word has been assigned
with a wrong morpho-syntactic tag, e.g. a noun instead of a verb etc. during initial
corpus preprocessing,

— NamedEntity – handles the cases in which an analysed word or expression represents
a named entity, so it cannot be directly linked with some specific sense (plWordNet
contains a very limited number of named entities by default), but it might be still useful
for disambiguation,

— IdiomaticPhrase – this tag was introduced mainly to handle multi-word idiomatic
expressions since they might have a strong impact on the disambiguation process,

— ForeignWord – represents a non-Polish word or expression found in the corpus,

— TextError – marks a word or expression which has a typographical error.

Tokens annotated manually by the annotators as OtherSense, TaggingError, NamedEntity,
ForeignWord, or TextError were excluded from counting during the evaluation procedure
(i.e. not taken into account for the measures) since they are incompatible with our sense
inventory and the participants would not be able to correctly disambiguate them.

Properties of gold standard data

In this section we discuss the properties of our evaluation datasets – SPEC and KPWR-100.
The overall distribution of all annotated tokens is presented in Figure 2. We also provide the
statistics of annotated multi-word expressions with respect to their Part-of-Speech as shown
in Table 3. The large part of annotated multi-word expressions consists of reflexive verbs
with się. pronoun. However, we can also notice some noun expressions and adverbs in both
corpora.

Table 2: The overall distribution of annotated tokens in our evaluation corpora with respect to their
initial Part-of-Speech

Corpus #Nouns #Verbs #Adject. #Adverbs #Total

KPWr-100 7 028 3 428 2 442 677 13 891
SPEC 1 617 1 182 487 219 3 689

Table 4 shows the number of annotated single words with respect to their Part-of-Speech
excluding the ones that do not belong to any multi-word expression annotated in the corpora.
We also analysed the distribution of senses and polysemy ratio in our evaluation datasets.
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Table 3: The distribution of annotated multi-word expressions in our evaluation corpora with respect to
their Part-of-Speech. The Part-of-Speech for particular MWE expressions might be different than the
original Part-of-Speech of its constituents.

Corpus #Nouns #Verbs #Adject. #Adverbs #Total

KPWr-100 205 282 0 28 515
SPEC 14 154 0 20 188

Table 4: The distribution of annotated words excluding annotated multi-word expressions

Corpus #Nouns #Verbs #Adject. #Adverbs #Total

KPWr-100 6 769 3 140 2 271 673 13 891
SPEC 1 705 1 099 524 229 3 951

Figure 1 shows the distribution of senses for lemmas existing in the corpora. This distribution
was determined by analysing our final manual annotations. The mean number of senses
µKPW r and µSPEC was 1.24 and 1.11, respectively. This means, that for most of the lemmas
their contexts were quite uniform in terms of their sense variation usually pointing to the same
preferred sense. Figure 2 presents sense distribution of lemmas in our evaluation with respect
to the underlying knowledge-base – plWordNet. This distribution shows that the algorithms
had to choose between 3 to 4 meanings on average from our sense repository. These two
observations, however, should not be treated as a clear indicator of task complexity.
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Figure 1: The distribution of the number of distinct
senses computed for multi-sense lemmas. Descrip-
tive statistics of sense distributions for KPWR cor-
pus µKPW r = 1.24,σKPW r = 0.64, and SPEC corpus
µSPEC = 1.11, σSPEC = 0.39.
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Figure 2: The distribution of the number of
senses according to the underlying sense inven-
tory. Descriptive statistics for KPWR corpus µKPW r =
3.45,σKPW r = 3.12, and SPEC corpus µSPEC =
3.96,σSPEC = 3.68.
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5. Evaluation

The WSD task is usually seen as a classification problem. The standard classification metrics
like precision and recall might be used to evaluate solutions. However, it is very difficult
to compute a reliable recall score when we deal with highly imbalanced data and missing
senses. The evaluation procedure proposed for this shared task was based on original metrics
introduced by SENSEVAL and SemEval with precision and recall metrics adapted to the nature
of WSD problem. This means that our precision and recall scores are defined as follows:

precision=
|N+A |
|NA|

(1)

recal l =
|N+A |
|NG |

(2)

where the precision is defined here as a ratio of correct decisions of given disambiguation
algorithm to all decisions that were made by this algorithm. N+A is a set of words (tokens) with
correctly predicted senses computed by algorithm A, and NA represents a set of all words for
which decisions were made by algorithm A. The recall score takes into account Gold Standard
annotations, hence it is defined as a ratio of correct decisions of a given disambiguation
algorithm to all Gold Standard decisions that were to be made by this algorithm NG . If a WSD
algorithm misses some Gold Standard tokens or disambiguate them incorrectly, then the recall
decreases.

Submitted algorithms had to be capable of inferring if a given word is a part of multi-word
expression or not. In the case of detecting a MWE, all its words (corresponding to the MWE
components) had to be annotated with the same sense. Otherwise, a given algorithm should
separately annotate the words with their respective senses. It should be mentioned that during
the evaluation process assigning different senses to the tokens of a MWE occurrence is treated
as wrong disambiguation.

6. Submitted solutions and results

The first edition of the proposed shared task unfortunately did not attract many participants.
In this edition we received only 5 unique submissions from 2 distinct participants which made
it the least popular task of PolEval 2020. However, we believe that all the effort on preparing
a uniform basis for further experiments and evaluation in the area of WSD will be a motivating
factor for the community for future work on developing more sophisticated and effective WSD
algorithms. Table 5 presents the performance of all solutions submitted by the participants but
limited only to their best-performing submissions evaluated on our test data. The solutions
submitted by participants were prepared only for Fixed Competition. The model submitted
by Dariusz Kłeczek (DK) outperformed the solution proposed by Arleta Juszczak (AJ). DK-v3
was the best solution submitted by participants attending the contest. However, when we
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compared the submitted solutions with selected baselines we found that there is still some
place for improvement.

Table 5: The submitted solutions evaluated on KPWr-100 and SPEC data. As a baseline we proposed a
heuristic picking always (F)irst (W)ord(N)et (S)ense.

Corpus Submission Precision Recall F1

KPWr-100

DK-V3 0.599 0.589 0.594
AJ-V2 0.318 0.231 0.268
FWNS* 0.563 0.556 0.559
WoSeDon* 0.625 0.618 0.621

SPEC

DK-V3 0.592 0.577 0.584
AJ-V2 0.292 0.201 0.238
FWNS* 0.587 0.575 0.581
WoSeDon* 0.607 0.594 0.600

The usual baseline solution for WSD is based on the Most Frequent Sense heuristic (MFS)
that disambiguates a given text token by taking the most frequent sense of the corresponding
word (lemma) as it is observed in sense-annotated corpora. This kind of heuristic appeared to
be a tough-to-beat baseline for WSD solutions, but it actually requires large sense annotated
corpora to collect data. In the Fixed Competition we did not allow to use any of the available
sense annotated corpora.5 Thus, we decided to propose a heuristic that might be a good
substitute for the MFS baseline. The First Wordnet Sense (FWNS) heuristic picks always
a sense with the lowest sense variant number from all sense candidates of disambiguated
word e.g. always prefers piękny 1.adj ‘beautiful’ than other senses of this word piękny, i.e.
{piękny 2.adj, piękny 3.adj, . . . } and so on. Senses with lower variant numbers were mostly
introduced to plWordNet earlier than the variants with higher numbers.6 As plWordNet was
built by linguists, sense variants might be correlated with the human awareness of existing
word senses and their natural ordering in our minds and be somehow positively correlated
with sense frequencies.7 Application of the FWNS heuristic as a correcting factor significantly
improves a WSD algorithm for Polish (cf. Janz and Piasecki 2019). FWNS heuristic appeared
to perform quite well also in our task (see Table 5).

The second baseline uses WoSeDon (Kędzia et al. 2015, Janz and Piasecki 2019) – a Polish
word sense disambiguation tool based on well-known Personalized PageRank algorithm (Page
et al. 1999). This method was initially introduced for disambiguating English texts and
included later in a tool called UKB (Agirre and Soroa 2009). In this work, WoSeDon was
configured to operate only on raw plWordNet 3.2 knowledge-base without any extensions. As
all participants declared their solutions as intended for Fixed Competition, we also did not use

5That are also very small in the case of the Polish language and not representative at all.
6Some exception might happen due to sense reorganisations resulting from wordnet editing and correcting over

the years.
7However, sense numbering is also influenced by the organisation of work on plWordNet construction over years.

Thus the above outline hypothesis on possible positive correlation between the sense number and its salience for a
given lemma is only an unverified hypothesis only, even if very likely one.
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any additional heuristics (including FWNS) that could disqualify the model from the Fixed
Competition.

The results clearly show that the proposed baselines are still tough-to-beat when the training
data is quite limited. WoSeDon outperformed all submitted solutions including DK-v3 based
on BERT architecture.

7. Conclusions

This paper has briefly summarised the first edition of the WSD Shared Task at PolEval 2020.
5 submissions from 2 participants were registered for this task. A few promising results
based on neural transformer architecture were presented. For comparison we also introduced
two baseline solutions, including one state-of-the-art system for Polish, namely WoSeDon.
Moreover, the performance of all solutions, submissions and baselines, was measured on
a new test data just created for the task. New evaluation corpora and development data will
be publicly available. We also plan to prepare an extended benchmark dataset for Polish WSD
compatible with the dedicated sense inventory – plWordNet 3.2. We hope that the collected
data and a uniform evaluation environment will facilitate further development of novel word
sense disambiguation methods in the future.
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Polbert: Attacking Polish NLP Tasks with
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Abstract

Different NLP tasks have required different solution architectures. This is especially true for
Polish language, given its complexity. The recent trend of pretraining large, transformer-
based language models, such as BERT, on large corpora, gives us an opportunity to consider
a unifying architecture capable of solving these different tasks. Polbert is a Polish version of
BERT language model, pretrained on a large Polish corpus. In this paper, I present Polbert,
and discuss how it can be applied to solve a range of tasks from PolEval 2020 challenge,
including the winning submission to PolEval 2020 Task 3: Word Sense Disambiguation.1
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1. Introduction

In the last 2 years, pretrained language models have conquered the NLP benchmarks (Howard
and Ruder 2018, Radford et al. 2019). Especially the transformer (Vaswani et al. 2017) and
BERT (Devlin et al. 2019) architecture proved very effective in solving various NLP tasks.
Pretrained models were being made in monolingual and multilingual variants. When I trained
and released Polbert in March 2020, it was the first Polish BERT model broadly available. In
this article, I will describe my approach to training Polbert, and how I used it to solve a range
of NLP tasks from the PolEval 2020 competition.

1http://2020.poleval.pl/tasks/task3/

http://2020.poleval.pl/tasks/task3/
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2. Polbert

2.1. Models

Polbert model follows bert-base-uncased model architecture (Devlin et al. 2019), with
12 layers, 768 hidden units embeddings, 12 attention heads, and 110M parameters in total.
It is available in two variants: cased and uncased, and can be downloaded via HuggingFace
library2 (Wolf et al. 2019).

2.2. Corpus

Polbert is trained on a large Polish-language corpus described in Table 1 (Tiedemann 2012,
Ogrodniczuk 2018). The training corpora were divided into sentences with srxsegmenter,3

concatenated and tokenized with HuggingFace BERT Tokenizer. I initially trained the uncased
model, and after working with it for a while I noticed issues that have been corrected in the
cased model. First, some Polish characters and accents are not tokenized correctly through the
BERT tokenizer when applying lowercase. This doesn’t impact sequence classification much,
but may influence token classification tasks significantly. Second, I noticed a lot of duplicates
in the Open Subtitles dataset, which dominates the training corpus. These duplicates were
removed before training the cased model, which resulted in a smaller, but more balanced
training corpus.

Table 1: Polbert training corpus

Dataset Uncased Cased Lines Words

Polish subset of Open Subtitles x 236 635 408 1 431 199 601
Polish subset of Open Subtitles (deduplicated) x 41 998 942 213 590 656
Polish subset of ParaCrawl x x 8 470 950 176 670 885
Polish Parliamentary Corpus x x 9 799 859 121 154 785
Polish Wikipedia (Feb 2020) x x 8 014 206 132 067 986

Total uncased x 262 920 423 1 861 093 257
Total cased x 68 283 960 646 479 197

2.3. Training

Polbert was trained with code provided in Google BERT’s GitHub repository.4 The training
setup is described in Table 2. While training the cased variant, I apply Whole Word Masking.
Both models were trained on a single Google Cloud TPU v3-8.

2https://huggingface.co/dkleczek
3SRX rules file for sentence splitting in Polish, written by Marcin Miłkowski: https://raw.githubusercontent.

com/languagetool-org/languagetool/master/languagetool-core/src/main/resources/org/
languagetool/resource/segment.srx

4https://github.com/google-research/bert

https://huggingface.co/dkleczek
https://raw.githubusercontent.com/languagetool-org/languagetool/master/languagetool-core/src/main/resources/org/languagetool/resource/segment.srx
https://raw.githubusercontent.com/languagetool-org/languagetool/master/languagetool-core/src/main/resources/org/languagetool/resource/segment.srx
https://raw.githubusercontent.com/languagetool-org/languagetool/master/languagetool-core/src/main/resources/org/languagetool/resource/segment.srx
https://github.com/google-research/bert
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Table 2: Polbert training approach

Model
Training setup

Steps Sequence length Batch size Learning rate

Uncased 100 000 128 512 1e-4 (10 000 steps warmup)
800 000 128 512 5e-5
100 000 512 256 2e-5

Cased 100 000 128 2048 1e-4 (10 000 steps warmup)
100 000 128 2048 5e-5
100 000 512 256 2e-5

2.4. Evaluation

KLEJ benchmark (Rybak et al. 2020) is a set of nine evaluation tasks for Polish language
understanding. The results captured in Table 3 are achieved by running a standard set of
evaluation scripts, utilizing both cased and uncased variants of Polbert. Can you see how the
uncased model performs better than cased on some tasks? I hypothesize this is because of the
oversampling of Open Subtitles dataset and its similarity to data in some of these tasks.

Table 3: Polbert results on KLEJ benchmark

Result Polbert cased Polbert uncased

NKJP-NER 93.6 90.1
CDSC-E 93.4 93.9
CDSC-R 93.8 93.5
CBD 52.7 55.0
PolEmo2.0-IN 87.4 88.1
PolEmo2.0-OUT 71.1 68.8
DYK 59.1 59.4
PSC 98.6 98.8
AR 85.2 85.4

Average 81.7 81.4

3. Applications

3.1. Post-editing and rescoring of automatic speech recognition results

The goal of this task was to convert a sequence of words from an automatic speech recognition
(ASR) system into another sequence of words that reflects the actual spoken utterance. The
data provided by organizers consisted of the outputs from an ASR system: 1-best output (each
utterance containing a single best transcript), n-best output (each utterance containing up
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to 100 best alternative hypotheses of the ASR output), and lattice output (each utterance
containing a list of arcs forming a lattice of the ASR output).

How do we frame this as a problem that can be solved by transformer-based language model?
It would be interesting to attempt solving this as a sequence-to-sequence problem, similar
to Machine Translation. Unfortunately, Polbert consists only of the encoder part, and hence
cannot be used in this way.

Salazar et al. (2020) describe a method for using pretrained masked language models to score
sentences. We mask tokens in a sentence one by one, then sum the log probability for each
missing token to get the pseudo-log-likelihood score of that sentence. This score can be used
to select alternative hypotheses among the ASR output (n-best or lattice) that are more likely
to represent the actual utterance. As indicated by the authors, this method is computationally
very expensive and exceeded my GPU budget to attempt it on the PolEval 2020 ASR task.
Salazar et al. (2020) also propose a method to reduce the computational budget by training
a network to match BERT’s scores without masked tokens, by finetuning the network via
regression over the [CLS] token. That assumes, however, that we have already calculated
a number of sentence scores which can be used as training examples.

In my solution to the PolEval 2020 ASR task, I developed a simple classification model, using
Polbert as the encoder, with a single linear classification layer on top of the [CLS] token hidden
state. The model is trained on Polish Parliamentary Corpus, taking all utterance transcripts as
examples with True label, and the corresponding ASR 1-best output as examples with False
label. I use this model to classify 100-best hypotheses for each utterance, and select the one
with the highest logits. This solution improves the word-error rate on the test dataset from
27.6% to 26.9%.

3.2. Word Sense Disambiguation

The goal of WSD task was to identify the correct sense for each ambiguous word appearing
in a text. Given the limited availability of training data, the organizers suggested focusing
on knowledge-based approaches to the problem, by using available language resources such
as WordNet, and weakly supervised approaches making use of small annotated data and the
knowledge extracted from large unstructured textual corpora.

My solutions follow the rules of fixed competition, i.e. I didn’t use any data other than the
provided Polish WordNet version 3.2 (Maziarz et al. 2016) data to train my model. The
solution code is released on Github.5

Previous research

My solution is primarily inspired by GlossBERT by Huang et al. (2020) who proposed to
construct context-gloss pairs from all possible senses of the target word in WordNet, and then
convert WSD to a sentence-pair classification task. Context is defined here as the sentence
containing the target word to be disambiguated. Gloss is a brief definition of a sense associated

5https://github.com/kldarek/poleval2020

https://github.com/kldarek/poleval2020
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with the target word. A binary classification layer indicates whether the context and gloss
sentences in a pair correspond to the same word sense.

Huang et al. experiment with three approaches. In Token-CLS, the final hidden state of the
token corresponding to the target word is the input to the classification layer. In Sent-CLS,
the final hidden state corresponding to the first token [CLS] goes into the classification layer.
Sent-CLS-WS also uses the [CLS] token, but additional weak supervision is added to the input:
target word is surrounded by quotation marks in the context sentence, and it is also added at
the beginning of the gloss sentence.

By comparing the context sentence, containing our target word, with the gloss sentence for
each of the WordNet senses, we convert the original N-class classification task into N binary
classification tasks, where N equals to the number of senses corresponding to the target word.
See examples in Table 4.

Table 4: Construction of sentence pair examples: Glossbert (top), Polbert (bottom)

Label: True Context: Wszystkie trzy "pokoje" mają okna od strony parku
Pair: pokój: pomieszczenie mieszkalne, w którym się przebywa, także w hotelu

Label: False Context: Wszystkie trzy "pokoje" mają okna od strony parku
Pair: pokój: stan, gdy nie ma wojny

Label: True Context: pokój: Wszystkie trzy **pokoje** mają okna od strony parku
Pair: pokój: Dwa **pokoje** z kuchnią w zupełności mi wystarczą...

Label: False Context: pokój: Wszystkie trzy **pokoje** mają okna od strony parku
Pair: pokój: Za szczególny wkład w promowanie **pokoju** i praw człowieka...

Solution overview

I made two modifications to the GlossBERT Sent-CLS-WS design. First, I use both gloss and
examples sentences from WordNet to construct my sentence pairs. Second, I modify both
sentences in a pair to have the same format (target word lemma: sentence with emphasis
around **target word**). I didn’t have time for experiments or ablation study, but I believe
that structuring the paired sentences in a similar way, and using all examples available in
WordNet, both help the model with the WSD task.

To create my training examples, I iterate over the list of WordNet lemmas with associated
synsets and examples. If there are more examples associated with the same lemma and
synset, I pick one at random and create a sentence pair with True label. If there are examples
associated with the same lemma and other synsets, I pick one at random and create a sentence
pair with False label. In this way, I create 443 316 sentence pairs, using the last 20 000 for
validation and the remainder as my training dataset.

I use BERT as an encoder for the sentence-pair example, followed by dropout (p=0.2), and
a linear binary classification layer on top of the pooled output, corresponding to the [CLS]
token. I use HuggingFace library (Wolf et al. 2019), load the pretrained Polbert uncased model
weights, and fine-tune it for 5 epochs with learning rate 2e-5, early stopping, max length of
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64, batch size 32, AdamW optimizer and linear schedule with warmup. The accuracy for the
best epoch (4) is 85.7% on my validation dataset.

Disambiguation: the baseline

In order to disambiguate words in a target text, I start by splitting the text into sentences and
identifying the lemma associated with each word in a sentence (both of these are provided
in the PolEval 2020 WSD Task). The lemma with the sentence containing it becomes the
first element of the sentence pair provided to Polbert model. I then list all synsets associated
with the lemma. For each synset, I list all examples associated with it and construct sentence
pairs with those examples. I run the model on each of these sentence pairs and average the
model outputs (scores) across all examples associated with a single synset. The synset with
the highest average score is selected as the disambiguated sense for the target word.

Disambiguation: Multi-Word Expressions

One problem with the baseline solution is that it doesn’t account for multi-word expressions.
To make up for this, I pre-process the sentences and check if there is a WordNet lemma
associated with any bigram or trigram from that sentence. If I find a match, then I use
the lemmas associated with the n-grams for disambiguation, instead of the original lemmas
associated with the single words. For example, the trigram w dużej mierze has its own lemma
in WordNet, and I use that lemma for disambiguation, instead of lemmas associated with the
individual words (w, duży, miara).

Disambiguation: missing sense examples

Another problem with the baseline solution was that it couldn’t disambiguate senses if the
corresponding synset lacked examples. For those synsets, I look up synsets connected via both
hypernymy and hyponymy relationships and associated examples. I use these examples to
score the synset that was missing examples.

To illustrate this, there isn’t a definition or example associated with the lemma szczędzenie. To
disambiguate this word, I would use examples associated with its hipernyms and hyponyms
(oszczędzanie).

Results

I prepared two solutions to the PolEval 2020 WSD Task. Both are based on the same model
described above. The first solution Baseline refers to the disambiguation baseline. The second
solution Baseline+MWE+Rels includes the modifications to address multi-word expressions
and missing sense examples. Table 5 presents the results of both solutions on the competition
dataset.

Further work

I believe the results on WSD task can be further improved. One way is to improve the
sentence-pair classification model by adjusting the finetuning protocol and dataset. Another
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Table 5: PolEval 2020 WSD Task Results

Submission
KPWr Sherlock

Precision Recall Precision Recall

Baseline+MWE+Rels 0.599296 0.588727 0.592263 0.576850
Baseline 0.564432 0.550860 0.564384 0.542966

way is to improve the disambiguation algorithm, by considering how the related synsets are
identified, scored and compared. It would be also interesting to compare Polbert with other
transformer-based language models. Finally, this approach didn’t use any annotated sense
data, which could give a further boost to the model’s performance.

3.3. Information extraction and entity typing from long documents with
complex layouts

This challenge was about collecting information from real, long documents with complex page
layouts by integrating entities found across multiple pages and text sections, tables, plots,
forms, etc. This included recognising units with a standard name (NER) (e.g. person, location
or organisation), but also the roles of units in whole documents (e.g. chairman of the board,
date of signature).

For each document in this task, we get the raw pdf file and two files produced with an OCR
tool: raw text and text with positional info. While Garncarek et al. (2020) show how the
positional info may be useful for information extraction, I decided to use the raw text only. In
my solution, I follow a procedure similar to the one described by Graliński et al. (2020).

My final solution was based on multilingual BERT encoder, NER architecture, and Random
Forest postprocessing. It resulted in 0.44 F1 score on the test set. After the competition
finished, I replicated the solution only changing the encoder, from multilingual BERT to
Polbert. That resulted in 0.446 F1 score.

Preprocessing

One difficulty associated with this challenge is the length of documents. In order to deal
with it, I start by tokenizing each document and then divide it into chunks. I experimented
with chunks of length 128 and 512, and the latter led to better scores and is used in the final
submission.

Autotagging

The training and validation datasets provided in this task consist of the documents and the
final information extracted from those documents (entities and relationships). We are not
given information about the location of these entities in the documents. I decided to use
auto-tagging to create a training dataset for the model. For each target entity, I check if it’s
contained in any of the document chunks, and tag the related tokens in case I find a match.



86 Dariusz Kłeczek

For some entities (such as period or date), I create several variants of the targets to reflect
different ways these entities may be represented in the text, for example: 1 maja 2020,
1.5.2020, 1/5/2020 etc. I believe that this step is crucial to the quality of model outputs, and
my final result could be improved by spending more time on tagging the training data.

A special case in this challenge is entity linking - people signing documents need to be linked
with their role and date of the signature. I found that in most of the training and validation
documents, the date of signature corresponds to the date of the document, and I apply this as
a rule after identifying the document date. For linking people and roles, I experimented with
two approaches. The first approach consists of identifying people and roles as separate entity
types and then connecting them in the same order that they appear in a document chunk.
This leads to some problems, for example when a model recognizes a different number of
people and role entities in a single chunk. The second approach is based on the observation
that majority of the role entities in the training and validation documents can be represented
as three classes (Prezes Zarządu, Wiceprezes Zarządu, Członek Zarządu). I treat these classes
as different entity types and tag the names of the people via their role, rather than a generic
PERSON entity. Both approaches performed similarly in my experiments, and I used the first
approach in my final submission.

Model

In this challenge, I experimented with different choices for the encoder and the head of the
information extraction model. I used Polbert, multilingual BERT, and Polish Roberta (Dadas et
al. 2020) as encoders. I experimented with two head architectures. In the NER architecture,
I apply dropout to the sequence output from BERT encoder, and then a linear classification
layer with 9 classes (entity types). In the QA architecture, I use the same sequence outputs
followed by dropout, and then apply a linear classification layer to identify the span (start
and end tokens) corresponding to each entity type. In my experiments, NER architecture
performed better than QA, and I used it in my final submissions. Due to the time and resource
constraints, I didn’t run a direct comparison of performance across various encoders.

Postprocessing

The first step of postprocessing is to standardize the entities extracted from the documents into
the target format, which is essentially a reverse operation to the transform variants performed
during auto-tagging. The next step is to aggregate the information extracted across multiple
document chunks. Given that the chunks overlap, I assume that only one chunk per document
contains the needed information, so for each entity type, I need to select the right chunk.
I started by selecting the chunk with the maximum logits for each entity (averaged across the
tokens corresponding to a given entity). Then I created a random forest for each entity type,
trained on the validation chunks, taking into account the entity logits and other features, such
as the logits of other entities identified in the same chunk.

4. Future work
There are many types of NLP problems and many ways to further use transformer-based
language models such as Polbert. Beyond pursuing these applications, I believe two important



Polbert: Attacking Polish NLP Tasks with Transformers 87

directions need further work, especially for the Polish language. First, we need smaller variants
of the pretrained models, which would make it easier to broadly apply them in production.
Second, we need to develop Polish variants of sequence-to-sequence models that can be used
for example in translation or summarization.

5. Conclusions

Polbert is a transformer-based language model pretrained on a large Polish language corpus.
It offers a universal sentence and token representation, which can be used, after finetuning,
on a broad range of NLP tasks.
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Abstract

In this paper, we present PolEval Task 4, the challenge for information extraction and entity
typing from long documents with complex layouts. We give the rationale for the data set and
compare the results obtained during the evaluation campaign.
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1. Introduction

Named Entity Recognition (NER) is a well-known type task in the Natural Language Recog-
nition (NLP) community, as exemplified by, for instance, the CoNLL 2013 challenge (Tjong
Kim Sang and De Meulder 2003) or, for Polish, the NKJP NER data set (Przepiórkowski et
al. 2012) along with the PolEval 2018 Task 2. NER data sets usually contain entities labeled
for general types: persons, organizations, locations, dates, amounts of money. The problem
is that it does not reflect the real-world needs, when considering domain-specific legal and
business-related documents.

The PolEval Task 4 was built on a novel Polish dataset for Information Extraction and NLP
reasoning challenge. The dataset comprises long documents with complicated layouts. Our
objective was to prepare a new data set for Polish, resembling business machine learning
applications. The task was aimed to represent various challenges faced in business contexts,
e.g. non-trivial 2D layouts, business logic, extracting information from long documents,
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potentially noisy dataset. We hope that the data set will form a good benchmark for complex
Information Extraction systems based on NLP.

2. Data set description

2.1. General description

Information gathering from real-life, long documents must deal with the complex layout
of pages by integrating found entities along with multiple pages and text sections, tables,
plots, forms etc. To encourage progress on more in-depth and more complex information
extraction algorithms, we presented a dataset in which systems must extract the most important
information about various types of entities from formal documents. These entities are not
only classes from standard named entity recognition (NER) systems (e.g. person, localisation,
or organisation), but also the roles of the entities in the whole documents (e.g. CEO, issue
date).

The data set is based on reports in the PDF format submitted by companies to the ESPI
(Elektroniczny System Przekazywania Informacji) system.1

2.2. Basic statistics

The dataset consists of two sets (train and validate) and one test set. Each of these folders
contains a .csv file with ground truth values for each report. For each report there are .pdf
(raw input), .txt (text input) and .hocr (text input with positional info) files placed in the
reports/report_id folder. The dataset (train and validate) contains 2216 unique records. The
test set is composed of 555 documents. More data is given in Table 1.

Table 1: The data set in numbers

Train Val Test

Documents 1628 548 555
Size in chars 255.1M 84.2M 90.9M
Data points 36519 12314 12700

The ground truth contains the following columns (see also Table 2):

— id – unique identifier of a specific financial report,

— company – name of the company,

— drawing_date – date which specifies when the financial report was submitted,

— period_from – start of the obligation period,

— period_to – end of the obligation period,

1https://www.knf.gov.pl/dla_rynku/espi

https://www.knf.gov.pl/dla_rynku/espi
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— postal_code – postal code of the company,

— city – the city where the company is registered,

— street – the name of the street where the company is registered,

— street_no – the number of the street at which the company is registered,

— people – members/chairpersons of the company management; a cell contains a list of
tuples, where each tuple has the following form: (<date of signature>, <name and
surname>, <position>) e.g. (’2019-12-16’, ’Jan Kowalski’, ’Prezes Zarządu’).

Table 2: Sample ground truth of documents in the dataset

id; company; drawing_date; period_from; period_to; postal_code; city; street;
street_no; people

208910;ZAKŁADY MAGNEZYTOWE ROPCZYCE SA;2012-08-30;2012-01-01;2012-06-30;39-
100;Ropczyce;ul. Przemysłowa;1;[(’2012-08-30’, ’Józef Siwiec’, ’Prezes Zarządu’), (’2012-08-
30’, ’Marian Darłak’, ’Wiceprezes Zarządu’), (’2012-08-30’, ’Robert Duszkiewicz’, ’Wiceprezes
Zarządu’)]
118734;PC GUARD S.A.;2009-08-31;2009-01-01;2009-06-30;60-467;Poznań;Jasielska
16;16;[(’2009-08-31’, ’Dariusz Grześkowiak’, ’Prezes Zarządu’), (’2009-08-31’, ’Mariusz
Bławat’, ’Członek Zarządu’)]

For each column, no more than 15% of documents can have an incorrect ground-truth
value (see Table 3). The table also presents the results of our baselines comprising regular
expressions crafted to each entity individually.2

Table 3: Coverage of entities in the whole dataset

Entity
% of the documents Regex benchmark

in the dataset (accuracy on test set)

company 88.16 57
street 88.99 24
drawing_date 93.40 32
postal_code 94.70 39
city 98.85 34
street_no 98.92 38
period_from 99.57 64
period_to 99.75 66
people 100.00 –

2https://github.com/wojciech1871/hocr_parser

https://github.com/wojciech1871/hocr_parser
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3. Evaluation

F1 was used as the evaluation metric, as implemented (as MultiLabel-F1) in the GEval
evaluation tool (Graliński et al. 2019). This evaluation scheme was natural for ‘atomic’ data
points, but the people values expressed as tuples posed a special difficulty. It was decided to
use the following scheme for them:

1. The 3 elements of tuples (<date of signature>, <name and surname>, <position>)
were added as ‘atomic’ values.

2. In order to check the actual relations, two data-point types were introduced: one for
the person-date-of-signature relation, one for the person-position relation.

3. All these 5 types were treated within the F1 just as the remaining types.

Also, some simple pre-processing was done as part of the evaluation procedure:

— all values were case-folded (hence, the metric was case-insensitive),

— the abbreviation ul. (street) was stripped (but not similar abbreviations), as it was used
inconsistently (in gold standard vs actual documents).

The results are reported with bootstrap sampling with 200 samples (the -B 200 option in
GEval) to calculate the 95% confidence intervals for F1 (Koehn 2004).

For better presentation, the results are given as percentages (multiplied by 100).

4. Result summary

There were a total of 8 submissions by 3 unique submitters. The final overall results (on the
test set) are presented in Table 4. As can be seen, the differences between the best solutions
submitted by distinct submitters are substantial, values for precision and recall are quite
similar, not much precision-recall trade-off was done.

Table 4: The overall results

Submission F1 P R

double_big 60.6± 1.7 60.8± 1.7 60.4± 1.8
double_small 58.8± 1.8 60.0± 1.8 57.7± 1.9
middle_big 58.5± 1.6 59.9± 1.7 57.1± 1.7
MBART+RF 44.0± 1.4 49.1± 1.4 39.8± 1.7
CLEX 65.1±1.9 63.8±2.5 66.6±1.7
100_RF 58.4± 1.6 56.8± 1.6 60.0± 1.9
300_xgb 59.2± 1.5 57.0± 1.6 61.4± 1.9
300_RF 58.7± 1.5 56.9± 1.7 60.5± 1.8

The results for specific types of data points (limited to ‘pure’ extractions, i.e. extraction of
atomic data points) are given in Table 5. The data-point types range from surprisingly hard



Results of the PolEval 2020 Shared Task 4 93

(drawing_date and person__signature_date) to practically solved (period_from/to).
Interestingly, for some types the overall best submission was surpassed by other solutions (in
particular for drawing_date).

Table 5: The results for pure information extraction

Submission pure IE address company date period name position

double_big 64.1±1.4 67.1±2.2 59.5±3.9 46.5±4.4 93.8±1.4 69.4±2.4 67.7±2.5
double_small 62.8±1.4 65.9±2.3 58.9±3.6 43.2±4.3 93.4±1.5 67.4±2.5 67.0±2.6
middle_big 62.6±1.4 66.1±2.1 59.6±3.6 42.0±3.9 94.0±1.5 68.2±2.1 65.6±2.6
MBART+RF 49.2±1.3 64.3±2.4 20.5±3.2 19.5±2.6 66.3±3.6 56.9±3.1 59.8±2.9
CLEX 69.7±1.6 81.1±2.1 79.7±3.3 41.0±3.7 97.2±1.2 77.5±2.3 67.8±3.0
100_RF 61.7±1.3 66.6±2.3 59.9±3.9 46.0±4.1 82.7±2.1 67.7±1.9 64.7±2.4
300_xgb 62.8±1.3 67.6±2.1 60.9±4.1 46.3±4.0 90.7±1.7 67.2±2.1 65.4±2.3
300_RF 61.8±1.3 66.7±1.9 57.7±4.1 46.3±4.2 82.1±2.3 68.6±2.1 66.2±2.2

Finally, the results obtained for the ‘relational’ data points (i.e. originally expressed as tuples)
are given in Table 6. They are not much different from the results for single data points, it
might indicate that the relations did not introduce specific challenges.

Table 6: The results for relation extraction

Submission all relations person-position person-signature

double_big 46.4± 2.5 55.4± 2.9 37.4±4.0
double_small 43.9± 2.8 52.8± 2.5 34.7± 4.3
middle_big 43.0± 2.3 52.9± 2.7 33.4± 3.7
MBART+RF 27.1± 2.1 45.5± 3.1 8.9± 2.4
CLEX 51.3±2.9 63.8± 2.9 38.9±4.1
100_RF 45.2± 2.3 52.3± 2.5 38.0±3.6
300_xgb 44.7± 2.2 52.8± 2.4 36.8±3.7
300_RF 45.9± 2.3 53.9± 2.7 37.6±3.6

5. Conclusions

PolEval Task 4 represents a new type of information extraction tasks, closer to business
contexts. For some data points, it is still far from being resolved. It remains to be seen whether
using the layout information can bring more improvement or whether a more challenging
data set of this type should be produced.
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Abstract

The paper presents a rule-based and knowledge-based system for extracting information from
documents with a complex layout called CLEX. The system was designed to solve the PolEval
2020 Task 4. This task’s goal was to extract values for a given set of fields from financial
reports in PDF format. The system utilizes document layout available in the form of HOCR files
obtained from the PDF documents. The document processing workflow in CLEX consists of
four stages: (1) document structure preprocessing, (2) annotation of relevant text fragments
based on the local context, (3) extraction of the final value based on the global document
view, and (4) lemmatization and/or normalization of the values if necessary. The presented
approach obtained F1 score of 0.651 on the test set and got first place in the task. The system
is available under the GPL license at http://github.com/CLARIN-PL/clex.

Keywords

natural language processing, information extraction, knowledge-based systems, rule-based
systems, complex layout, PDF, HOCR

1. Introduction

In recent years layout-aware information extraction from structured and partially structured
text documents has gained importance in many fields. In robotic process automation (RPA)
information extraction tools are used to process electronic invoices (Patel and Bhatt 2020) or to
import data from forms and tables into computer systems (Yin et al. 2020). In the commercial
world, the rule-based systems dominate the machine learning approaches (Chiticariu et al.
2013). At the same time, some of the layout-based tasks which are very similar between
different domains (like table and form parsing and understanding) can be already processed

http://github.com/CLARIN-PL/clex
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by fully automated systems — Amazon Textract1 or Microsoft Azure Form Recognizer.2 More
complex tasks still need some level of supervision to obtain production-level results.

For tasks based on information extraction from plain text (recognition of named entities,
temporal expressions, or semantic relations), the state of the art results are being obtained by
systems utilizing different types of generic language models — BERT and its variants.3 This
success was possible due to the presence of (1) generic language models trained on large
volumes of text and (2) manually annotated datasets required for fine-tuning the downstream
task. In 2020 several language models which are trained to jointly model interactions between
text and layout information emerged — LayoutLM (Xu et al. 2020), LAMBERT (Garncarek
et al. 2020) and TABERT (Wei et al. 2020). The models were tested on form and table
understanding tasks and obtained, on average better results than the systems based on purely
text-based language models. The improvement varied from 1–2 pp for TABERT and LAMBERT
to 9 pp for LayoutLM.

2. Task description

2.1. Problem statement

The goal of the task is to extractor values for a defined set of fields from documents with a
complex layout. The documents’ layout is called complex because the document contains
multiple pages and text sections, tables, plots, forms, etc. The set of fields includes the
following categories:

— company — name of the company

— drawing_date — date which specifies when the financial report was submitted

— period_from — start of the obligation period

— period_to — end of the obligation period

— postal_code — postal code of the company

— city — the city where the company is registered

— street — the name of the street where the company is registered

— street_no — the number of the street at which the company is registered

— people — members/chairmen of the company management. For each entry three values
should be extracted: name — person name, role — role in the company, and sign —
signature date.

1https://aws.amazon.com/textract/features
2https://azure.microsoft.com/en-us/services/cognitive-services/form-recognizer/
3https://gluebenchmark.com/leaderboard

https://aws.amazon.com/textract/features
https://azure.microsoft.com/en-us/services/cognitive-services/form-recognizer/
https://gluebenchmark.com/leaderboard
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2.2. Datasets

Task organizers provided three datasets: training (1662 documents), developer/validation
(554 documents), and test (555 documents). Each document consists of three files: PDF — the
original document, TXT — text extracted from the PDF file, and HOCR — text with positional
information extracted from the PDF.

During the preliminary data analysis, we have identified the following features of the datasets:

1. There is no one standardized structure of the document. Each financial report may
provide the same information in different locations (e.g., at the beginning, or the end
of the document) or in different forms. For example, the people field may have a variety
of structures (see Figure 1).

2. Field values may appear in many different formats and variants. For example, date can
be presented in one of the following formats (the list does not contain all of the possible
forms):

— 19 września 2020

— 19 września 2020 roku

— 19 września 2020 r.

— 19.09.2020

— 19-09-2020

— 19/09/2020

— 2020.09.19

— 2020-09-19

The same applies to periods. Moreover, there are various methods of expressing the
beginning and end of the reporting period. It is not necessary to point the date literally,
e.g., the expression I półrocze 2013 r. (En. ’first half of 2013’) refers to the specific
period, but it doesn’t contain exact dates. Consequently, there was a need not only for
the normalization of time expressions but also for interpreting some brief descriptions.
The problem of different ways of expressing the same (or almost the same) information
concerned also the names of the companies. There are full and short names, e.g.
Zakład Budowy Maszyn „ZREMB – CHOJNICE” S.A., ZBM „ZREMB – CHOJNICE” S.A. and
„ZREMB – CHOJNICE” S.A..

3. The lack of a unified standard structure for reports resulted in many problems requiring
normalization. The most common issues are listed below.

(a) Different variants of city — some listed companies have their headquarters in
small towns that do not have their own post office. This minor detail results in
unclear information about the city — the seat, e.g., Fugasówka, ul. Reja 4 (street,
street_no), 42-440 (postal_ code) Ogrodzieniec (name of the town where the post
office is located).
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(a) Document 62096 (b) Document 174621

(c) Document 209136 (d) Document 58528

Figure 1: Different layouts for the people field (marked with a dashed rectangle)
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(b) Incomplete or incorrect role — standard role names have been abbreviated sev-
eral times to a single word, e.g. Prezes zarządu (Chairman of the Management
Board) abbreviated to Prezes (Chairman) also Członek zarządu (Member of the
Management Board) to Member. The developer/validation data set also included
additional information on other functions of the board members, e.g., Piotr Kaźmier-
czak, Członek Zarządu, Dyrektor Finansowy (Piotr Kaźmierczak, Member of the
Management Board, Financial Director).

(c) Inconsistent use of the middle name — in some cases, the middle name of a board
member was used in the main text of the document, but in the final part (with
signatures), there was only the first name, e.g., Dariusz Krawiec vs. Dariusz Jacek
Krawiec.

3. CLEX

3.1. Motivation

We decided to use a rule-based and knowledge-base approach to solve the information
extraction task. We found that machine learning methods for this task will not be effective
enough, as we identified the following problems:

1. Lack of annotated dataset for the downstream task. The task’s goal is to extract
values of a specified set of fields from the document content. The ground truth contained
only the fields type and value without the information about the value position in the
document. Datasets in this form could be used for the classification task but not the
extraction task.

2. Field values in ground truth were not present in the documents or had different
form. In order to prepare the dataset for the extraction task, we considered automatic
annotation of documents based on the ground truth. We have analyzed 100 randomly
selected documents and found the following problems:

— field value was not present in the document — 75% of documents did not contain
a signature date,

— field value has a different value in the document and in the ground truth — 50%
of documents had different drawing date,

— field value had a different form in the document than in the ground truth — for
instance, the ground truth contained people middle names while in the documents
there were only first and last names or vice versa.

3. Field values were ambiguous. Values from ground truth could appear in the document
multiple times, and not every occurrence was valid. For instance, a person’s name could
occur not only on the signature page but also on a list of board members or another
context. The invalid matches could introduce noise to the training dataset.
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Considering the quality of the ground truth and potential problems with generating a high-
quality dataset for the information extraction task, we decide to use a rule-based and
knowledge-based approach. This approach could be later used to create the training dataset
for any machine learning approach.

3.2. System architecture

Although files in three formats are provided, we only use one format for recognition — HOCR.
It contains the full text and spatial information about the relative position of text fragments
to each other.

In Figure 2, we presented the system’s workflow. While loading the file, we decompose
document to pages, lines, and tokens. Tokens are words or punctuation marks or words and
punctuation marks together. There is a preprocessing step that separates trailing punctuation
marks from words if they happen to be in the same token. There are more preprocessing steps
while loading the document, and they are described in Section 3.4.

CLEX

HOCR
document

Document structure
preprocessing

Annotators 
(local context)

Extractors
(global/document

context)

Field value
normalizationOutput

Figure 2: CLEX workflow

The actual processing is divided into three steps:

1. Local rules search for information of a specific type.

2. Global heuristics select the final information for each type of information based on all
the premises.

3. If necessary, the field value is lemmatized and normalized.
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All the processing stages are described in Section 3.4.

3.3. Resources

Throughout the processing, CLEX uses the following resources:

— company names in base form — the base forms were extracted from training and
development sets.

— company addresses — extracted from training and development sets. The motivation
was the assumption that company names and addresses change relatively infrequently.
It is highly probable that the name and address used in one document are also correct
for another document of a given company.

— person names — the names were obtained from NELexicon2 (Marcińczuk 2014),

— city names — the names were obtained from the Polish TERYT database. The data about
towns and streets were combined, and only towns large enough to have named streets
were selected. The underlying assumption was, for cities that are so small that they do
not have named streets, that there is very little chance that they will be listed in the
provided financial documents. In further processing, the list is even more shortened as
it turned out that many cities have names identical to common words ("Dobra", "Ruda",
"Szklana") leading to misclassifications. We sorted them by the number of streets they
have (descending) and took only the first two thousand. Even further, cases where the
name of the city coincided with the common personal name of a person (e.g., "Jarosław")
have to be handled in a special way during processing documents.

3.4. Processing stages

Document preprocessing

The system performs the following preprocessing operations:

1. Restoring order — Generally, the order of tokens is not preserved in provided HOCR
files. It means some tokens have spatial information indicating that they should be
placed in the document after some other tokens that are actually placed after the first
ones. Also, it happens that whole lines are not in order or incorrectly repeated multiple
times. There are additional steps of preprocessing that reorganize all tokens and lines
to have them stored in proper order.

2. Separation punctuation marks — Separate trailing punctuation marks from words if
they happen to be in the same token.

3. Handling empty leading pages — Next, we detect the number of empty leading pages.
By default, extractors prefer data from the first page of the document, and usually, it
is enough even when there are leading empty pages in the document. But for fields
period_from and period_to we needed to process precisely the real — not artificial and
empty — first (’title’) page of the document.
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4. Calculating line heights and its distribution — Since we have spatial information in
the HOCR file, it is possible to extract each line’s height in the document and calculate its
distribution per page and document. Initially, it was meant to help find lines significantly
higher than the average one and identify separate sections of documents and their titles.
In the end, only row height data was used. It influenced the evaluation of the date
tokens found: the higher the row, the higher the score. They were also used when
cutting footers and headers from the actual content of the document.

5. Separating headers and footers from the document — Headers and footers span
throughout many pages, and this repetition can lead to misclassification of some tokens
they contain. However, they may also include relevant information, so simply dismissing
them would not be the best solution. That is why an algorithm for cutting off headers
and footers and creating a separate structure from them was developed. This has proved
to be a non-trivial task as headers and footers can be multi-line, and some lines may
vary between pages. The same procedure is deployed separately for headers and then
for footers. In the further description, we focus on processing headers. There are two
stages of this procedure:

(a) The first is to build a tree of lines that compose headers. The basic idea is that this
procedure sets its range of activity as a whole document and then ’walks’ from
the start page to the last page of the range, checking the first line of each page.
If the line of the current page is the same as the line from the previous page, it
is very likely ’in’ header. There is a parameter saying how many times the exact
line must repeat for the procedure to decide it is ’in’ header. If the line is not the
same, it means it detected the end of the header processed so far. It then holds
processing at the current level and ’dives in’ to check if the newly found header
line has some header lines below. It does it by cutting the first line from processed
pages, narrowing the range of activity to contain only them, and invoking itself
recursively with these parameters. It continues to ’dive in’ as long as it finds new
header lines on subsequent levels. If it does not find new header lines on the
current level, it starts to continue its work from the last place it holds until the
end of the document is reached. The actual implementation is slightly different,
but the idea is kept.

(b) This stage exists only due to technical issues. All the complex pattern-matching
machinery works with document pages and not with trees of lines, so we need to
flatten and ’linearize’ the tree from the previous step to create a list of artificial
pages with just headers and footers, and only then we can apply annotators.

Annotators — local context

At the lowest level, we have a set of matchers that match the given text or the given regular
expression. We can specify whether attention should be paid to the case of letters and — in
the case of multi-member matches — what is the maximum distance in the text between these
members. As we describe in the following paragraph, the results are processed by annotators,
get labeled with type, and stored per page. There are also matchers that search inside these
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stored values for a specific type of results or all results but specific types. This is used to create
more sophisticated rules. There are also two more that work with set or sequences of words:
the first compares each encountered token with the words in the given dictionary, the second
compares a sequence of two or one words against sequences in the given dictionary. The
latter is used to identify the names of cities in the text.

The matchers described in the previous paragraph are combined to define much more elabo-
rated patterns. And then sets of these patterns are used by annotators to create even more
sophisticated rules that allow extracting fragments of the text that are likely to contain words
or phrases that the system is looking for. This layer can be considered as the heart of the whole
system. Generally, each annotator corresponds to a type of a field that needs to be extracted
and is mentioned in the task description (city, postal_code, drawing_date). However, there
are some types of fields requiring a more subtle approach e.g., there are separate annotators
searching for information about persons: one searches horizontal layouts, another searches
vertical layouts. Also, there is a whole family of annotators dealing with the street and house
number together. The results are stored per page.

Annotators can form chains. One annotator can utilize the output of the others. This mecha-
nism allows to decompose the extraction problem, and share information required for different
fields. In Figure 3 we present annotators and dependencies between them.

Extractors — global view

In this layer we have extractors that try to extract the best result from the ones found and
stored so far. There are eight different extractors corresponding to fields that need to be
extracted and listed in the task description. Fields period_from and period_to are combined
together inside one extractor. Similarly fields street and street_no. There is one additional
extractor that is responsible for finding the signature page.

Extractors have a defined behavior depending on the type of field they are trying to find. The
simplest extractor tries to find if there are results found on the first page, and if they are, then
only they are later considered. If there are no such results, all of them (from all document’s
pages) are taken into account. These results are then sorted by score, and the first one in the
document is chosen as the final result.

One extractor searches for a value that does not correspond to any field described in the task
description. The extractor tries to find the page with signatures. It uses two ways to find the
page. First is just by using matcher searching for the text "Podpisy" and then checking on the
page that match. If the page is not selected, then the second way is used by using matcher
that searches for the city’s name and a string representing date positioned side by side. If the
page is found, then this information is used by some other extractors that prefer results found
on the page with signatures (e.g., people data).

Lemmatization and normalization

There is an additional step for fields company and street. Just before returning the result,
the text is lemmatized. In the case of company field, first, each separate word is lemmatized,
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Figure 3: Chains of annotators used by CLEX

then some of these separate words may be ignored (like ’DOMINUJĄCA’, ’FIRMY’), and then
the full company name is lemmatized. In the case of street field, first, we check if the actual
street name is just one word. If not, the text is not changed. If yes, the word’s ending is
changed according to the records in a special table containing inflected and the basic versions
of endings.

Additional global heuristics

The most different from the standard result extraction procedure described in the previous
chapter is the one that selects information about people. First, it checks if the page with
signatures was found. If yes, then it tries to process results found on that page. If there are
no such results, then it tries to find them differently than it is done in the first step: first, it
finds all tokens with words denoting a person role like "prezes", "wiceprezes", "prokurent",
"księgowy" etc. And for each such token, it finds the first token above and below — that’s
why we needed to reorganize lines and tokens properly. Then it scans patterns that match
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first and last names in the nearest horizontal neighborhood of the newly found tokens. If
something is found, we have a set of tokens with roles and a set of corresponding tokens
with first and last names. Tokens with first and last names can be in the nearest horizontal
neighborhood of two different tokens with roles. Then, disambiguation is done by comparing
the Euclidean distance between geometric centers of tokens — exactly square of the distance
to avoid floating-point processing overhead. In case still nothing is found, CLEX falls back to
the default procedure described earlier — omitting checking results from the first page.

Not only can we introduce changes in choosing the final result by changing the algorithm but
also by changing the score assigned to intermediate results. This possibility is not heavily used,
but there are places taking advantage of it. When calculating the score for some types (city,
company), a small alteration is introduced: if an intermediate result is found in the header or
footer, its score is much higher than the ’standard’ ones. When searching for period_from and
period_to values, the highest score is assigned to intermediate results from the title page, and
half of this score is assigned to result from the consecutive page. Further results are assigned
significantly fewer scores — that corresponds to the height of the row in which the token was
found.

3.5. Summary

The CLEX architecture itself is quite simple, but the approach’s strength lies in the two-tier
system of patterns and rules, which are combined in sophisticated ways. They do most of the
work. Additional heuristics and preprocessing add up to the result.

Table 1: Number of patterns and matchers used to extract field (total)

Field annotators patterns matchers

address
– city 1 1 1
– postal_code 1 1 1
– street & street_no 4 7 37

company 3 18 54

dates
– date 1 4 14
– drawing_date 1 3 10
– period_from & period_to 1 7 29

person 2 5 26

person_position 1 2 4

At the lowest level, we have eleven types of matchers used to compose more complicated
patterns. The patterns are created and used by annotators. Then, extractors select the final
results. Table 1 shows how many annotators, patterns, and matchers were used to identify each
type of field. The numbers are total numbers, it means that, for example, to identify company,
we have three annotators that contain 18 patterns, and there are 54 instances of matchers
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used to build up these 18 patterns. Annotator for date is used by annotator for drawing_date
and period_from and period_to. Some annotators use results of other annotators e.g. annotator
for person uses results produced by annotators dealing with date and person_position. The
number of matchers might not be perfectly accurate as matchers automatically created from
multi-word strings are counted as one.

4. Evaluation

Table 2 contains detailed evaluation results on the development set. Fields address and per-
son are compound fields and consist of the following subfields: address={city, postal_code,
street, street_no}, person={name and date, position}. Fields person_name_position and per-
son_name_sign are also compound fields and consist of two out of three subfields for person,
respectively {name, position} and {name, sign}.

Table 2: Evaluation results of CLEX on the development set

Field F1 Precision Recall

address 0.901 ± 0.016 0.901 ± 0.016 0.901 ± 0.016
– city 0.952 ± 0.017 0.955 ± 0.017 0.952 ± 0.017
– postal_code 0.907 ± 0.024 0.942 ± 0.019 0.876 ± 0.029
– street 0.900 ± 0.023 0.911 ± 0.023 0.888 ± 0.025
– street_no 0.907 ± 0.023 0.928 ± 0.022 0.889 ± 0.026
company 0.893 ± 0.027 0.904 ± 0.028 0.881 ± 0.029
drawing_date 0.437 ± 0.043 0.445 ± 0.042 0.428 ± 0.043
period_from 0.971 ± 0.013 0.974 ± 0.013 0.968 ± 0.014
period_to 0.967 ± 0.014 0.970 ± 0.014 0.964 ± 0.015
person 0.607 ± 0.024 0.597 ± 0.033 0.619 ± 0.023
– person_name 0.805 ± 0.023 0.792 ± 0.035 0.821 ± 0.024
– person_position 0.724 ± 0.030 0.712 ± 0.039 0.739 ± 0.031
– person_sign_date 0.427 ± 0.042 0.425 ± 0.046 0.432 ± 0.043
– person_name_position 0.695 ± 0.031 0.682 ± 0.039 0.707 ± 0.032
– person_name_sign 0.399 ± 0.042 0.394 ± 0.046 0.410 ± 0.043

F1 (UC) 0.694 ± 0.017
F1 0.682 ± 0.018

CLEX obtained the highest scores for period_from and period_to — above 0.96. This field was
the easiest to recognize, and the values were the most consistent between the ground truth
and documents. The majority of errors are due to mistakes in the ground truth. Field address
obtained the third-highest score of 0.90. The errors were equally distributed between system
mistakes, ground truth mistakes, and differences in field forms (for instance, “Plac Trzech
Krzyży” vs. “Pl. Trzech Krzyży”, “E. Plater” vs. “Emilli Plater”). Near the same score was
obtained for company with a similar distribution of errors, including differences in field value
forms (for instance, “BUDOPOL-WROCŁAW SA” vs. “BUDOPOL WROCŁAW SA”, “POLSKI
KONCERN NAFTOWY ORLEN SA” vs. “ORLEN SA”).
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The lowest scores were obtained for person and drawing_date. In case of person the most
problematic was signature date which obtained 0.427 — near half the score for name and
position. The main reason for the low score is that many documents were missing signature
date, while in the ground truth, each record contains some value. For position most of the
errors were related to value normalization, for example “Wice Prezes Zarządu” vs “Wiceprezes
Zarządu”, “Prezes Zarządu” vs “Prezes”. For drawing_date CLEX obtained a significantly lower
score than for the remaining fields, which is 0.437. The main problem with this filed was the
large discrepancy between the documents’ values and the ground truth.

Table 3: Evaluation results on the test set

Submission F1 (UC) on test

CLEX 0.651 ± 0.019
double_big 0.606 ± 0.017
300_xgb 0.592 ± 0.015
double_small 0.588 ± 0.018
300_RF 0.587 ± 0.015
middle_big 0.585 ± 0.016
100_RF 0.584 ± 0.016
Multilingual BERT + Random Forest 0.440 ± 0.014

On the test set, CLEX obtained a score of 0.651, which is higher by 0.045 than the second-best
score. The full leaderboard for Task 4 is presented in Table 3.

5. Summary

In the paper, we presented a system for information extraction from a complex layout called
CLEX. Based on the training dataset analysis, we decided to use the rule-based and knowledge-
based approach instead of machine learning due to some dataset’s problems. Our system
achieved a score of 0.651 on the test set, which was the highest score among the submitted
solutions.

The system is available under the GPL license at http://github.com/CLARIN-PL/clex.

Acknowledgements

Work financed as part of the investment in the CLARIN-PL research infrastructure funded by
the Polish Ministry of Science and Higher Education.

http://github.com/CLARIN-PL/clex
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Abstract

In this paper we present a solution to the Task 4 of the PolEval 2020 evaluation campaign for
natural language processing tools for Polish. This task was to extract information and type
entities from long Polish documents with complex layouts. As a solution to this problem we
propose two machine learning algorithms. The first one is an Artificial Neural Network (ANN)
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1. Introduction

Natural Language Processing (NLP) is one of the most interesting, developing and yet chal-
lenging area of research, which is undertaken by many scientists from around the world.
Among the issues of NLP we can find text classification, named entity recognition (NER),
sentiment analysis (usually based on tweets, IMDb film reviews, amazon products reviews,
etc.), text generation including caption generation, language translations, etc.

Polish belongs to the group of inflectional languages, thus it is much more complicated and
more difficult to machine processing than, for example, English. While for English there are
many very well developed machine learning models, e.g. Transformers (Wolf et al. 2019),
i.e. BERT (Vaswani et al. 2017), RoBERTa (Liu et al. 2019), XLNet (Yang et al. 2020) or
SpaCy (Honnibal and Montani 2017), for Polish it is usually possible to use only multilingual
options. SpaCy model for Polish has been actually developed in the past few years (Tuora
and Kobyliński 2019), and there were unofficial versions of these models, but it was officially
accepted in the SpaCy package only in July of 2020.

In this research we are facing a problem of information extraction and entity typing from long
Polish documents with complex layouts, which was one of the PolEval 2020 tasks. Documents
are financial reports of Polish corporations, which contain unstructured arrangement of text
such as very long tables, space for signatures, headers and footers, two-column format, etc.
For each of the reports there were three files available: PDF – the original report, TXT – optical
character recognition (OCR) of the report and HOCR – data representation for formatted text
obtained from OCR. In our solutions we have focused only on TXT files, which we have noticed
were very “tidy” and quite easy to process and prepare for further analysis with machine
learning algorithms. Additionally to each of the provided by organizers sets (except from the
evaluation one) there were provided so called ground truth tables, which contained data that
should be extracted from reports. Among extracted data it is possible to find: name of the
organization, address of the organization (separately city, street and street number), names
of people managing the organization with their positions, and dates (date and time scope of
the report).

Reviewing related to NER papers and articles it is possible to find many approaches to this
problem. It is rather obvious that finding e.g. a postal code might be as simple as building
a proper regular expression rule to extract the preferable data. If there is only one postal
code in the document, then the situation is obvious, but what with the situation when there
are several different postal codes in the document – which one should we choose? On the
other side, there are already tools for names extraction, like NLTK Python package (Bird et al.
2009). But what if there are several or over a dozen or even several dozens of names in one
document and we need just a few of them? How to choose which of them are relevant? All of
the above ambiguities led us to design our own models as a solution to a given problem.

Another option for solving the NER problem may also be to look for already described in
the literature machine learning algorithms, like conditional random fields (CRF) (Song et al.
2019) or artificial neural networks (Lample et al. 2016, Chiu and Nichols 2016) and many
others (Yadav and Bethard 2019, Anandika and Mishra 2019). Unfortunately, the problem
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is that the proposed solutions are often dedicated to specific types of documents and it is
difficult to generalize such solutions to any texts.

In this research we present our approach to the information extraction problem which is based
on artificial neural networks (ANNs) and ensemble models. The latter ones, built on the basis
of neural networks (ANNs as weak learners), have been the subject of researchers for many
years (Hansen and Salamon 1990, Perrone and Cooper 1995). In more recent papers it is
possible to find ensemble models specifically for NER problem (Speck and Ngomo 2014, Won
et al. 2018). Due to the specificity of the issue and the unique nature of the reports that we
consider, we decided to design our own solutions. The first presented solution is naturally
based on artificial neural networks constructed from Long Short-Term Memory (LSTM) layers,
which are known for their wide area of applications in NLP problems. As an extension of this
solution we have decided to combine ANN with random forests as weak learners and use
another random forest or XGBoost as the ensemble one.

The paper is organized as follows. In Section 2 we present preprocessing of reports’ texts and
details of proposed machine learning algorithms for information extraction. In Section 3 we
are briefly presenting results of our solutions, while in Section 4 we give final remarks.

2. Data and methods

Polish NLP problems have been in the area of our not only scientific but also commercial
interests, for a long time. Our research is related to various branches of the NLP issues. Our
recent work for example has concerned the classification of Polish land areas according to
their future use, based on spatial development plans (Kaczmarek et al. 2020). Lately we have
also worked on NER problem in legal documents. The PolEval 2020 contest gave us then an
opportunity to test our existing solutions on new documents with different layouts.

In this specific task of information extraction from long Polish documents with complex
layouts we are in fact facing a problem of so-called Multi-Word Expressions (MWE; Sag et al.
2002). We do not know how many words are there in a single entity, and the list of people
managing the organization with their positions seems to be the most tricky issue, as we do
not exactly know how many people are we actually looking for. Hence, the biggest challenge
was to pre-process the data and prepare it for further processing by selected machine learning
methods, especially since the considered documents differ from those we have dealt with so
far.

In this section the arduous process of data preparation and machine learning methods that
we have developed in our hitherto projects are described.

2.1. Data preparation – labels

In the first step of this part of our solution, we focused on transformation of text into “readable”
for artificial neural networks form. As can be expected we have decided to use a Tokenizer,
which is a dictionary that assigns to each word in a text an unequivocal integer number. After
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many experiments we have decided to expand this dictionary with new words. The first idea
was to add a base of Polish female and male names and surnames, which is available online,1

and a base of Polish postal codes with their associated cities and street names – also available
online.2 Of course we also thought about adding all of the Polish words (e.g. extracted from
word2vec models), but this idea did not improve our solution.

Tokenization was carried out with the assumption that all the standard special characters are
removed (e.g. $, @, #). During browsing both txt files and extracted entities we have noticed
that there are many special characters which are not included in the standard filters but they
occur directly in names. The reason is probably as obvious as that the special characters occur
in text due to the OCR process. We then expanded our Tokenizer with new special characters,
e.g. •, �, §, etc.

The second idea of improvement of our solution was to expand not only the dictionary but
also a structure of the designed artificial neural network (which, in detail is described further
in the paper), which was at the end built from two threads, where one processed the original
text while the second one the same text but each of its words was transformed to its basic
form. To extract these basic forms of words we used an inflectional analyzer and generator
for Polish morphology Morfeusz2 (Woliński 2014).

The basic forms of words turned out to be very useful not only during labeling of the given
text but also during extraction of entities from text. It is very important to notice that we are
dealing with Polish which is full of declensions of nouns, adjectives, adverbs, and counting
words, e.g. in Table 1 there is a conjugation of the word “eat” (pol. jésć) in English and Polish.

Table 1: Conjugation of the word “eat” (Pl. jésć) in English and Polish

ENGLISH: EAT
eat, ate, eaten, eats, eating

POLISH: JEŚĆ
jeść, jem, jesz, je, jemy, jecie, jedzą, jadłem, jadłam, jadłeś, jadłaś, jadł, jadła, jadło,
jedlísmy, jedlíscie, jedli, jadłyśmy, jadłyście, jadły, jedz, jedzmy, jedzcie, jadłbym,
jadłbyś, jadłby, jadłabym, jadłabyś, jadłaby, jadłoby, jedlibyśmy, jedlibyście, jedliby,
jadłybyśmy, jadłybyście, jadłyby, jedzący, niejedzący, jedząca, niejedząca, jedzące,
niejedzące, jedzony, jedzona, jedzone, jedzeni, ...

By looking in text for a specific name (e.q. Janusz Malinowski) we can fail just because there
is no exact match, but there is its inflected form (e.g. Januszowi Malinowskiemu). Basic
forms then helped us find the specific desirable word, but also during extraction saving the
proper basic forms of words. Polish can be however very tricky: with names, companies or
cities, we wish to save their basic forms, while with streets it is not so obvious. In Table 2
we are showing some examples of text sequences with their labels, to show how differently
labels can be assigned. Types of labels are explained further in text.

1https://dane.gov.pl
2https://www.poczta-polska.pl

https://dane.gov.pl
https://www.poczta-polska.pl
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Table 2: An example of labeling of text

The original Tokens Lemmata What
text in (original Label (from Label should be
English text in Polish) Morfeusz2) extracted

Marie ul o ul o street:
Skłodowska- Marii street_start Maria o ul. Marii
Curie Skłodowskiej street_continue Skłodowska o Skłodowskiej
Street Curie street_continue Curie o Curie

Bank Bank company_start Banek o company: Bank
Ochrony Ochrony company_continue Ochrona o Ochrony
Środowiska Środowiska company_continue Środowisko o Środowiska
S.A. S.A. o S.A. o S.A.

... together wraz o wraz o people: Jerzy
with the z o z o Wísniewski
president Prezesem o Prezes position_start Prezes
of the board Zarządu o Zarządu position_continue Zarządu
Jerzy Jerzym o Jerzy human_start
Wísniewski ... Wísniewskim o Wísniewski human_continue

The preparation of the output vectors for an artificial neural network required a thorough
analysis of the texts in comparison with the available ground truth tables.

On this basis, the following labels have been prepared:

— street_start, street_continue, street_no

— company_start, company_continue

— drawing_date_day, drawing_date_month, drawing_date_year

— period_from_day, period_from_month, period_from_year

— period_to_day, period_to_month, period_to_year

— postal_code_pre, postal_code_post

— city_start, city_continue, city

— human_start, human_continue, position_start, position_continue

In addition to the above, a label was added conventionally called "o", which meant that a given
word/token is from our point of view irrelevant.

Each of the above categories was separately analyzed:

— Each of the named entities, like company, street, people, were considered to be longer
than one word, that is why we decided to use name_start to indicate the beginning of
this name in text and name_continue as its continuation. We have then noticed that in
the training set, there was no city names longer than one word, that is why we added
the label city.

— Because each of the considered companies was a joint-stock company, they all had an
adequate “postscript”: SA, S.A. or Spółka Akcyjna. That is why we have decided not
to search for this sequence in text, but only for the basis of the full name and after
extraction of this basis we added this “postscript” manually.
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— Each date (drawing_date, period_from, period_to) was separated into three tokens:
day, month and year. In Poland we use two basic formats of writing dates: dd.mm.yyyy
and dd month yyyy. Additionally, in the second format, month should be written in
genitive, while it is a common mistake to write it in nominative (e.g. correct: 13 marca
2003 r. and incorrect 13 marzec 2003 r.). Anyway, both these versions were considered
during labeling. A problem with dates was also that often the period covered by a
given report was not written explicitly with dates, but descriptively, e.g. the first half of
2003 or second quarter of 2003, etc. Due to the large variety, we did not undertake the
extraction of dates from such period descriptions, thus it can be one of the considered
extensions of this work.

— Postal codes were also considered as two separate tokens, due to the aforementioned
tokenization, which used “-” (hyphen) and “–” (dash) as filters.

2.2. Data preparation – choosing training data

After assigning labels to each word in the given text we were ready to divide our data into
train and validation sets. We have decided that as the input of a machine learning algorithm
we will use a sequence of 15 words (represented as a vector of integer numbers), while there
was one output, which returned a class of the middle word of the input vector. Summarizing
the number of training vectors: a sequence of 15 words and an according class of its middle
word, it was obvious that classes are highly unbalanced. The biggest class was the one with
irrelevant data noted as “o”. Without any extra oversampling we have decided to choose all
data with important labels and choose a random subset of data with label “o” which cardinality
was equal to the sum of the cardinalities of each of the remaining classes.

We have performed many experiments on artificial neural networks and then created our own
ensemble model based on one chosen structure of an artificial neural network, random forest
(RF) and XGBoost classifier. We had three, provided by organizers of the contest, data sets:
train, validate and test, which contained 1662, 554 and 555 reports, respectively. For the
purposes of this article, we have combined train and validate sets and extracted desirable
training vectors (according to the procedure described in section 2.1). Ultimately, the number
of training vectors was over 3.5 million. The first test that involved only neural networks
assumed classic division of training data into train and validation sets (e.g. 75% vs. 25%),
while the tests were performed on the data provided by the PolEval 2020 organizers (noted
as validation one). In the expanded model – the ensemble one – we have used the same
data set but then split it into two subsets (for both token and basic versions of the input):

1. the first subset was used to train the ANN and random forests sub-models and it
contained 65% vectors (approx 2.3 million) of the whole set – let us denote pairs of
this set as (X1, y1);

2. from the second subset, which contained 35% vectors (approx. 1.25 million), let us
denote it as (X2, y2), X2 was used to make a prediction on ANN and RFs obtaining three
vectors y2pred for each of the sub-models: y2_pred_ANN, y2_pred_RF_token, y2_pred_RF_basic;

3. finally pairs
�

y2_pred, y2

�

were used to train concatenating sub-models XGBoost.
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2.3. Artificial neural networks

As we already mentioned we have performed many experiments on different structures of
artificial neural networks (ANNs) and finally focused on two of them. The first one assumed
that as the input we will consider only the original text (see Fig. 1A) while the second one –
both, original text and the one where each word is transformed to its basic form (see Fig. 1B).
Let us denote the first one as middle and the second one as double.

A B

Figure 1: Structures of considered ANNs: A. model with one thread, that process only the original text
(middle), B. model with two threads, that process text with words in their original and basic forms
(double)

Both structures were built from the embedding as the first layer. Embedding is a matrix, in
which each row correspond to a different word and it assigns to it an n-dimensional vector
of real numbers, thereby placing each word in n-dimensional space, thus representing an
abstract distance between the words. It is possible to find various versions of embedding
matrices, among the most popular there are those provided by the Institute of Computer
Science, Polish Academy of Sciences (IPI PAN),3 and Facebook fastText (Joulin et al. 2016a,b).

3Over 100 different models available at http://dsmodels.nlp.ipipan.waw.pl

http://dsmodels.nlp.ipipan.waw.pl
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Both threads of the ANN that takes two vectors as inputs (token and basic) are actually of the
same structure as the ANN with one thread. The difference occurs after GRU (Gated Recurrent
Unit) layer, where one ANN goes to the output Dense layer, while the other one concatenate
two threads and two additional Dense layers are added. Embedding layers in both ANN
structures are followed sequentially with bidirectional Long Short-Term Memory (BiLSTM),
LSTM and GRU layers. LSTM, BiLSTM and GRU layers were built from 128 neurons, with
default set tanh activation and sigmoid recurrent activation functions. The penultimate
Dense layer in ANN with two threads was implemented with 64 neurons and relu activation
function. The last Dense layer in both structures had k outputs, where k denotes the number
of classes – Keras built-in to_categorical function converts a class vector of integers to a
binary class matrix. This last layer was implemented with softmax activation function. Both
models were compiled with mean squared error (MSE) loss and RMSprop optimizer.

2.4. Ensemble model with XGBoost and Random Forest

Ensemble machine learning model is a model consisting of multiple individual models, the
results of which are aggregated in order to achieve greater prediction accuracy than for a
single model (Dietterich 2000). Theory behind ensemble learning is based mostly on the
bias-variance-covariance decomposition. It is an extension of the bias-variance decomposition,
for linear combinations of models. Bias component describes how accurate the model is, on
average across different possible training data sets. The variance component describes how
sensitive the learning algorithm is to small changes in the training data set.

Previous research (Dietterich 2000, Tang et al. 2006, Mendes-Moreira et al. 2012) showed
that one of the most important characteristics of accurate ensemble model is diversity of base
learners and training data. This diversity can be achieved in many different ways, and can
be measured differently according to the approach of achieving it. There are three main
approaches for achieving diversity in ensemble methods: data diversity (bagging, random
forests, random subspace - random subsets of the full feature space), parameter diversity
(multiple kernel learning), structural diversity (heterogeneous, homogeneous, hybrid).

The main challenges facing the methods of creating ensemble machine learning models are
methods for aggregating individual classifiers within a model ensemble, selection of appropri-
ately diverse and complementary classifiers included in the models’ ensemble, selection of
final aggregation technique of single classifiers, preventing overfitting.

The conventional ensemble methods include:

— Bagging – Builds many individual classifiers based on randomly selected samples from
the original training data. Results of these multiple classifiers are combined using
average or majority voting.

— Boosting – Iterative technique in which algorithm adjust the weight of a single training
example based on the last classification. If training example was classified incorrectly,
it tries to increase the weight of this single example or decrease it if it was classified
correctly.
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— Stacking – A technique in which another learner (meta-model) is used to combine
output from individual base models of an ensemble. This technique performs well
in building ensemble learners for problems where different types of base models are
capable to learn some part of the problem, but not the whole space of the problem.

As we already mentioned in the first attempts we have analyzed many structures of artificial
neural networks (ANNs). After many tests we have decided to expand our model and design
an ensemble one, which apart of the ANN took also random forests and XGBoost classifiers
into consideration (see Fig. 2).

Random Forest is an ensemble supervised machine learning method that fits a number of
decision tree classifiers. Its great advantage is that these classifiers are trained on various
sub-samples of the training data and uses averaging to improve the accuracy and control
over-fitting at the same time.

XGBoost (Chen and Guestrin 2016) is a Python open-source package that provides a high-
performance implementation of gradient boosted decision trees. XGBoost models are also
ensemble ones, but they differ from the “classic” approach, while their ensemble decision
trees are trained one by one until the error of the model does not improve anymore.

As it is shown in Figure 2 ANN took as an input vectors of words in both configurations: created
from original texts and words transformed into their basic forms. We also implemented two
random forests, one of them was used to process vectors of words in their original forms,
while the other one – in their basic forms. At the position where XGBoost is inserted, we also
considered a random forest classifier.

Morfeusz2
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Random
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Figure 2: General idea of an ensemble model used for information extraction
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3. Results

The evaluation of the NER results involves the assessment of the correct recognition of the
type of entity and the correct recognition of the word boundaries in which the entity is located.
To evaluate the accuracy of entity recognition algorithms, hand-tagged sets are usually used
as a reference to the results obtained from the algorithms. There are two ways to compare the
results: exact match and relaxed match. In the first approach, a correctly recognized result is
one in which there is an entity type match and an exact match as to the word boundary (e.g.
the address Generała Władysława Sikorskiego 34/5 recognized as Sikorskiego 34/5 will not be
considered correctly detected). To measure effectiveness, measures known from classification
problems are used: Precision, Recall, F -Score. In the second approach, some blurring is
allowed within the recognized expression. Recognition can be passed if the entity is included
in the recognized string of words, regardless of their length.

In this section we will focus on results obtained with particular models of ANN, random
forests and then proceed to the results of the ensemble one, where the exact match method
of comparison with F1 score was used.

We have tested a few different configurations of random forests classifiers, and some of the
results are exposed in Table 3. The oob_score is a score of the training data set obtained
using an out-of-bag estimate. PS abbreviation stands for prediction score and it is an accuracy
of the prediction on the validation set (denoted earlier in the paper as (X2, y2)). Analyzing
values presented in Table 3 we could conclude that increasing the number of estimators did
not improve the quality of the classifier, but it significantly extended the time of training and
prediction. That is why we have decided to choose 200 estimators for further tests.

Table 3: Prediction score PS and oob_score for random forests sub-models of the ensemble model

Input version n_estimators oob_score PS

token
100 0.9551 0.9959
200 0.9555 0.9559
500 0.9956 0.9558

basic
100 0.9586 0.9598
200 0.9594 0.9600
500 0.9597 0.9600

Figure 3 shows accuracy and loss plots for considered ANN models. Figures 3A and 3C
concern the ANN structure with one thread (middle), while 3B and 3D – with two threads
(double). Please notice that waveforms are drawn starting from the third epoch, while
drawing all of the epochs made the plots unreadable. We have considered both ANN models
with different embedding matrices: nkjp abbreviation stands for The National Corpus of Polish
(Pol. Narodowy Korpus Języka Polskiego; Przepiórkowski et al. 2012) and refers to models
shared by IPI PAN, while fb – for Facebook fastText model. From over 100 models provided
by IPI PAN we have chosen two ones: with 100 and 300 size of the embedding matrix, while
Facebook fastText provide embedding the matrix of dimension 300.



BiLSTM RNNs in Heterogeneous Ensemble Models for NER Problem 119

A

DC

B

Figure 3: Line plots of accuracy and MSE loss over training epochs for both structures of ANNs considered
in this paper: A. Accuracy of middle model, B. Accuracy of double model, C. Loss of middle model,
D. Loss of double model

Analyzing Fig. 3 we can see that in fact the model with one thread has better performance of
training than the model with two threads, although both models appeared as well qualified.
Although based on these plots it seems that the first one should provide better results than the
second one, we tried to empirically choose the right model. Our tests consisted primarily of
manual viewing of final tables prepared on the basis of the results obtained from the neural
network and of capturing irregularities. These irregularities appeared in the text as unknown
entities (field of table was filled with “Unknown” word) or as tokens not recognized by the
tokenizer (unknown for tokenizer words were denoted as “__Unknown__”).

In Table 4 we are presenting F1 score calculated separately for each entity, with use of the
test set provided by organizers of the contest. The last entity – “people” – was separated into
names and positions and F1 score was also calculated separately for each of them. Analyzing
Table 4 it is possible to notice that F1 score varies between 0.41 and 0.98, depending on kind
of the entity. Apart from that we can observe that within a single entity type each of the
models gave similar value of the F1 score.
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Table 4: Number of unrecognized fields in the final result. Models middle and double refer to ANNs,
RF and XGBoost refer to ensemble models with RF and XGBoost as the concatenating one, respectively.
Numbers 100 and 300 refer to the size of the embedding layer, while NKJP and FB to its source.

Entity

Model
middle middle double double RF RF XGBoost

100 300 100 300 100 300 300
NKJP NKJP NKJP NKJP NKJP NKJP FB

company 0.5982 0.6054 0.4126 0.4432 0.6000 0.5784 0.6090
drawing date 0.4667 0.4631 0.4739 0.4667 0.4687 0.4739 0.4767
period from 0.8991 0.9027 0.8883 0.8865 0.8162 0.8054 0.8667
period to 0.9838 0.9784 0.9802 0.9838 0.8378 0.8378 0.9495
postal code 0.6216 0.6216 0.6450 0.6486 0.6378 0.6288 0.6432
city 0.7712 0.7585 0.7748 0.7982 0.7495 0.7441 0.7531
street 0.4955 0.4793 0.4964 0.4983 0.5063 0.5009 0.5063
street no 0.6252 0.6162 0.6450 0.6324 0.6594 0.6775 0.6793
people names 0.7132 0.6975 0.6539 0.6500 0.7513 0.7585 0.7430
people positions 0.8059 0.8020 0.8139 0.8182 0.8292 0.8396 0.8349

Summarizing our research, we have submitted 6 models to the PolEval 2020 contest, where the
first attempt assumed only ANNs (3 models) and the second one – ensemble ones (3 models).
In Table 5 we are showing the evaluation scores presented by the organizers of the contest.

A full description of each of the submitted models is as follows:

— double_big→ ANN with two threads and embedding of size 300 (NKJP)

— 300_xgb→ ensemble with XGBoost and embedding of size 300 (FB)

— double_small→ ANN with two threads and embedding of size 100 (NKJP)

— 300_RF→ ensemble with RF and embedding of size 300 (NKJP)

— middle_big→ ANN with one thread and embedding of size 300 (NKJP)

— 100_RF→ ensemble with RF and embedding of size 100 (NKJP)

Table 5: Evaluation scores

Model configuration F1 score

double_big 0.606± 0.017
300_xgb 0.592± 0.015
double_small 0.588± 0.018
300_RF 0.587± 0.015
middle_big 0.585± 0.016
100_RF 0.584± 0.016

By reviewing the results presented in Table 4 and 5, it can be concluded that the calculation
of the F1 score may not be consistent with organizers’ methods. We do not know for example
how was considered the joint-stock company annotation (Spółka Akcyjna), while it can be
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written in the following forms: SA, S.A., Spółka Akcyjna. On the other hand, we have noticed
that not all of the desired entities appeared in documents.

4. Discussion and conclusion remarks

Analysing our results, trying to improve them, while browsing available documents we have
noticed that not every entity appears in the considered financial report. This fact, together with
the notion that we are dealing with entities of the MWE type and due to the specificity of Polish,
makes the presented issue of NER very complicated. It is necessary to remember, that Polish is
an inflectional language and the task of named entity recognition is much more complicated
than e.g. for English. In the literature it is possible to find F1 values of 70–95%, however it
should be emphasized that these studies are limited to carefully selected categories of NER
(usually the ones that give the best results), and the algorithms use frequently hand-created
rules and lexicons.

Additionally, it is possible to observe that there is an imbalance in data sets, while specific
entities appear in text just a few times. While in other tasks, e.g. image processing, it is
possible to enlarge the training set, in NLP problems it is rather impossible. We believe then,
that more documents (financial reports) and ultimately more training vectors would improve
the evaluation results of our solutions. It can be noticed, however, that the ANN and ensemble
models achieved very promising results. We are constantly working on extending the proposed
solutions and we can confidently say that the results have already improved.
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